
On overcoming challenges with
GUI-based test automation

Michel Nass

Blekinge Institute of Technology Doctoral Dissertation Series
No 2024:02

On overcoming challenges with
GUI-based test automation

Michel Nass

Doctoral Dissertation in Software Engineering

Department of Software Engineering
Blekinge Institute of Technology

SWEDEN

2024 Michel Nass
Department of Software Engineering
Publisher: Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden
Printed by MEDIA-TRYCK, Lund, Sweden 2024
ISBN 978-91-7295-473-1
ISSN 1653-2090
urn:nbn:se:bth-25638

v

“Chase knowledge with passion, not milestones with haste, for true
understanding lies in the journey, not just the embrace of the finish line.”

- ChatGPT

vi

Abstract

Background: Automated testing is widely used in modern software devel-
opment to check if the software, including its graphical user interface (GUI),
meets the expectations in terms of quality and functionality. GUI-based test
automation, like other automation, aims to save time and money compared to
manual testing without reducing the software quality. While automation has
successfully reduced costs for other types of testing (e.g., unit- or integration
tests), GUI-based testing has faced technical challenges, some of which have
lingered for over a decade.

Objective: This thesis work aims to contribute to the software engineering
body of knowledge by (1) identifying the main challenges in GUI-based test
automation and (2) finding technical solutions to mitigate some of the main
challenges. One such challenge is to reliably identify GUI elements during test
execution to prevent unnecessary repairs. Another problem is the demand for
test automation and programming skills when designing stable automated tests
at scale.

Method: We conducted several studies by adopting a multi-methodological
approach. First, we performed a systematic literature review to identify the
main challenges in GUI-based test automation, followed by multiple studies
that propose and evaluate novel approaches to mitigate the main challenges.

Results: Our first contribution is mapping the challenges in GUI-based test
automation reported in academic literature. We mapped the main challenges
(i.e., most reported) on a timeline and classified them as essential or acciden-
tal. This classification is valuable since future research can focus on the main
challenges that we are more likely to mitigate using a technical solution (i.e.,
accidental).

Our second contribution is several approaches that explore novel concepts
or advance state-of-the-art techniques to mitigate some of the main acciden-

viii

tal challenges. Testing an application through an augmented layer (Augmented
Testing) can reduce the demand for test automation and programming skills and
mitigate the challenges of creating and maintaining model-based tests. Our pro-
posed approach for locating web elements (Similo) can increase the robustness
of automated test execution.

Conclusion: Our results provide alternative approaches and concepts that
can mitigate some of the main accidental challenges in GUI-based test automa-
tion. With a more robust test execution and tool support for test modeling, we
can help reduce the manual labor spent on creating and maintaining automated
GUI-based tests. With a reduced cost of automation, testers can focus more on
other tasks like requirements, test design, and exploratory testing.

Keywords: GUI Testing, Test Automation, Augmented Testing, Test Case
Robustness, Web Element Locators, Large Language Models

Acknowledgements

First, I would like to thank my supervisors, Emil Alégroth and Robert Feldt,
who spent countless hours helping me transition from an industrial mindset to
becoming more academic. Next, I would like to express my gratitude to Riccardo
Coppola, Maurizio Leotta, and Filippo Ricca for an amazing collaboration in
two of the studies. I feel truly blessed to be able to work with researchers of
your caliber. Finally, I would like to thank my colleagues at BTH and my family
for their encouragement and support.

x

Overview of Papers

Papers in this Thesis
• Chapter 2: Michel Nass, Emil Alégroth, and Robert Feldt. “Why

many challenges with GUI Test Automation (will) remain”. Published in
Information and Software Technology (IST), 2021.

• Chapter 3: Michel Nass, Emil Alégroth, and Robert Feldt. “Aug-
mented Testing: Industry Feedback To Shape a New Testing Technology”.
Published in IEEE International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), 2019.

• Chapter 4: Michel Nass, Emil Alégroth, and Robert Feldt. “On the In-
dustrial Applicability of Augmented Testing: An Empirical Study”. Pub-
lished in IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2020.

• Chapter 5: Michel Nass, Emil Alégroth, Robert Feldt, Maurizio Leotta,
and Filippo Ricca. “Similarity-based web element localization for robust
test automation”. Submitted to ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 2022.

• Chapter 6: Michel Nass, Emil Alégroth, Robert Feldt, and Riccardo
Coppola. “Robust web element identification for evolving applications by
considering visual overlaps”. Published in IEEE Conference on Software
Testing, Verification and Validation (ICST), 2023.

• Chapter 7: Michel Nass, Emil Alégroth, and Robert Feldt. “Improving
web element localization by using a large language model”. Submitted to
Software Testing, Verification and Reliability (STVR), 2023.

xii

Contribution Statement
We used the Contributor Roles Taxonomy (CRediT) [93] to formulate individual
author contributions to papers included in this thesis.

Chapter 2:

Michel Nass: Conceptualization (lead), data curation (lead), formal analy-
sis(lead), investigation (lead), methodology (lead), visualization (lead), writing
- original-draft (lead), writing - review and editing (lead).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Chapter 3:

Michel Nass: Conceptualization (lead), data curation (lead), formal analy-
sis(lead), investigation (lead), methodology (lead), visualization (lead), writing
- original-draft (lead), writing - review and editing (lead).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Chapter 4:

Michel Nass: Conceptualization (lead), data curation (lead), formal analy-
sis(lead), investigation (lead), methodology (lead), visualization (lead), writing
- original-draft (lead), writing - review and editing (lead).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-

xiii

porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Chapter 5:

Michel Nass: Conceptualization (lead), data curation (lead), formal analy-
sis(lead), investigation (lead), methodology (lead), visualization (lead), writing
- original-draft (lead), writing - review and editing (lead).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Maurizio Leotta: Conceptualization (supporting), data curation (sup-
porting), formal analysis(supporting), investigation (supporting), methodology
(supporting), visualization (supporting), writing - original-draft (supporting),
writing - review and editing (supporting).

Filippo Ricca: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Chapter 6:

Michel Nass: Conceptualization (equal), data curation (equal), formal analy-
sis(supporting), investigation (equal), methodology (supporting), visualization
(lead), writing - original-draft (equal), writing - review and editing (supporting).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

xiv

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Riccardo Coppola: Conceptualization (equal), data curation (equal), for-
mal analysis(lead), investigation (equal), methodology (lead), visualization (sup-
porting), writing - original-draft (equal), writing - review and editing (lead).

Chapter 7:

Michel Nass: Conceptualization (lead), data curation (lead), formal analy-
sis(lead), investigation (lead), methodology (lead), visualization (lead), writing
- original-draft (lead), writing - review and editing (lead).

Emil Alégroth: Conceptualization (supporting), data curation (support-
ing), formal analysis(supporting), investigation (supporting), methodology (sup-
porting), visualization (supporting), writing - original-draft (supporting), writ-
ing - review and editing (supporting).

Robert Feldt: Conceptualization (supporting), data curation (supporting),
formal analysis(supporting), investigation (supporting), methodology (support-
ing), visualization (supporting), writing - original-draft (supporting), writing -
review and editing (supporting).

Other Papers not in this Thesis
• Emil Alégroth, and Michel Nass. “JAutomate: A Tool for System- and

Acceptance-test Automation”. Published in IEEE Sixth International Con-
ference on Software Testing, Verification and Validation, 2013.

Funding
This work was supported by the KKS foundation through the S.E.R.T. Research
Profile project at Blekinge Institute of Technology.

Contents

Abstract vii

Acknowledgements ix

Overview of Publications xi
Papers in this Thesis . xi
Other Papers not in this Thesis . xiv

List of Abbreviations xix

1 Introduction 1
1.1 Overview . 1
1.2 Background and Related Work 2
1.3 Problem and Research Motivation 8
1.4 Research Objectives and Questions 11
1.5 Research Methodology . 15
1.6 Overview of Chapters . 19
1.7 Threats to Validity . 25
1.8 Discussion . 27
1.9 Future Work . 29

2 Why many challenges with GUI Test Automation (will) remain 31
2.1 Introduction . 32
2.2 Systematic Literature Review . 34
2.3 Results and Synthesis . 41
2.4 Discussion . 52
2.5 Threats to Validity . 56
2.6 Conclusions . 57

xvi CONTENTS

2.7 Acknowledgements . 58

3 Augmented Testing: Industry Feedback To Shape a New Test-
ing Technology 59
3.1 Introduction . 60
3.2 Background . 61
3.3 Related Work . 65
3.4 Industrial Workshop Study . 66
3.5 Results . 69
3.6 Discussion . 75
3.7 Conclusions . 76
3.8 Future Work . 77
3.9 Acknowledgements . 77

4 On the Industrial Applicability of Augmented Testing: An Em-
pirical Study 79
4.1 Introduction . 80
4.2 Related Work . 84
4.3 Methodology . 86
4.4 Results . 89
4.5 Analysis . 94
4.6 Discussion . 96
4.7 Conclusions . 97
4.8 Future Work . 97
4.9 Acknowledgments . 98

5 Similarity-based Web Element Localization for Robust Test Au-
tomation 99
5.1 Introduction . 100
5.2 Locating Web Elements . 103
5.3 The Similo approach . 108
5.4 Experimental study . 115
5.5 Results . 124
5.6 Discussion . 129
5.7 Threats to Validity . 132
5.8 Related Work . 133
5.9 Conclusions and Future Work . 137
5.10 Acknowledgements . 138

CONTENTS xvii

6 Robust Web Element Identification for Evolving Applications
by Considering Visual Overlaps 139
6.1 Introduction . 140
6.2 Background and Related Work 142
6.3 Visually overlapping nodes approach 144
6.4 Empirical Evaluation . 148
6.5 Results . 153
6.6 Discussion . 161
6.7 Conclusions and Future Work . 165

7 Improving Web Element Localization by Using a Large Lan-
guage Model 167
7.1 Introduction . 168
7.2 Large Language Models . 170
7.3 Similo . 171
7.4 VON Similo LLM . 175
7.5 Methodology . 177
7.6 Results . 187
7.7 Discussion . 193
7.8 Threats to Validity . 195
7.9 Related Work . 196
7.10 Conclusions . 200
7.11 Future Work . 200
7.12 Acknowledgements . 202

References 203

xviii CONTENTS

List of Abbreviations

Abbreviation Definition
AT Augmented Testing
DOM Document Object Model
GPT Generative Pre-trained Transformers
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
LLM Large Language Model
OCR Optical Character Recognition
REST REpresentational State Transfer
SLR Systematic Literature Review
SOAP Simple Object Access Protocol
SUT System Under Test
UFT Unified Functional Tester
UI User Interface
VGT Visual GUI Testing
VON Visually Overlapping Nodes

xx List of Abbreviations

List of Figures

1.1 The V-model of software development. 3
1.2 The test pyramid. 6
1.3 A VGT script testing the Windows calculator. 9
1.4 Two versions of the amazon.com website. 10
1.5 An overview of research goals, objectives, and questions. 12
1.6 An overview of studies answering the research questions. 13
1.7 The key challenges related to GUI-based test automation ar-

ranged from essential to accidental difficulties. 14

2.1 Literature review process . 34
2.2 The key challenges mapped on a timeline. Each dot represents

a statement from one or more publications published during the
year. 44

2.3 The type of software application selected for the empirical eval-
uation distributed over four time-periods. 44

2.4 The key challenges related to GUI-based test automation ar-
ranged from essential to accidental difficulties. 53

3.1 Workflow of Augmented Testing 62
3.2 Screenshot of the start session dialog 63
3.3 A state model tree . 63
3.4 Screenshot of the prototype for Augmented Testing 64
3.5 Code mapping of perceived benefits 70
3.6 Code mapping of perceived benefits 71
3.7 Code mapping of perceived drawbacks 72

4.1 Scout Overview . 82
4.2 State Model . 82

xxii LIST OF FIGURES

4.3 Screenshot of the Scout Prototype 83

5.1 A contact form. 104
5.2 Web elements present in both the newer (left) and older (right)

versions of the YouTube.com website. Some of the content is
blurred since it could be sensitive or copyrighted. 106

5.3 Overview of how to calculate the similarity score between two
sets of locator parameters. 109

5.4 Overview of how to calculate the similarity score between two
sets of locator parameters in our experiment. 111

5.5 Selection of websites, website versions, and target web elements.
The older version was selected as the closest version in the archive
that was a random number of months, sampled in the range of
12 to 60 months old. 118

5.6 The process of locating a candidate web element from the abso-
lute XPath of a target web element. 122

5.7 Similarity scores in a scatter plot containing all candidate web
elements and the correctly located one on the Ups.com website. . 127

5.8 Similarity scores in a scatter plot containing all candidate web
elements and the incorrectly located one on the Ups.com website. 128

6.1 Graphical representation of the GUI test case execution process,
highlighting the step (web element identification) that is studied
in this work. 142

6.2 Graphical representation of the computation of similarity score
between two different sets of locator parameters. 144

6.3 A visualization of a hierarchy of web elements represented both
visually and from a DOM perspective. It shows that although W2
and W3 are unique entities, they appear to be the same visual
component or, at least, overlap visually. 145

6.4 Visualization of how visually overlapping nodes are implemented
in VON Similo. 147

6.5 Distribution of absent, empty and valued attributes in the se-
lected web pages . 154

6.6 Top attributes for weighted variability in the selected web pages 155
6.7 ROC comparison for Similo, VON Similo, and the baseline cor-

responding to a random classifier 159

LIST OF FIGURES xxiii

7.1 Graphical representation of the computation of similarity score
between two different sets of web element properties. 172

7.2 The YouTube search bar. 173
7.3 The VON Similo LLM process. 176
7.4 The process of locating a candidate web element from desired

properties using the two approaches. 185
7.5 Overview of the three phases of the experiment. 186
7.6 Venn diagram containing the number of correctly located candi-

dates (i.e., web elements) for each approach. 188
7.7 Motivations from the LLM classified as codes. 189

xxiv LIST OF FIGURES

List of Tables

1.1 Overview of the research methods, data collection methods, and
data analysis methods presented in this thesis. 16

2.1 Overview showing the number of included publications per step. 34
2.2 Search Results . 36
2.3 Definitions . 37
2.4 Inclusion/Exclusion criteria tier 0 38
2.5 Inclusion/Exclusion criteria tier 1 38
2.6 Inclusion/Exclusion criteria tier 2 39
2.7 Included publications . 42
2.8 Included publications, continued 43
2.9 Reported challenges related to GUI-based test automation 43

3.1 Identified perceived benefits and drawbacks 73
3.2 Identified perceived benefits and drawbacks 74

4.1 Create test using Scout and Protractor 90
4.2 Create test using Scout and Selenium 90
4.3 Comparing all approaches of creating tests 92
4.4 Survey about Scout. LA - Likert Average, PX - Person X. 92
4.5 Survey about Protractor / Selenium. P1-P6 used Protractor

whilst P7-P12 used Selenium. LA - Likert Average, PX - Per-
son X. 93

5.1 Mapping of locator parameters. 112
5.2 Locator parameters in newer and older version of the YouTube.com

website. 114

xxvi LIST OF TABLES

5.3 The number of target web elements selected from the older and
newer versions of each website. 121

5.4 Description of the localization result. 123
5.5 The total number of located and non-located web elements for

all websites. 125
5.6 Comparison of the locator values for the target, the selected can-

didate, and the correct candidate web elements. The locator
values were extracted from the Aliexpress.com website. 126

5.7 The similarity (between 0 and 100) when comparing the target
with the selected, and correct web element locator values. 126

5.8 The average time (in milliseconds) to locate a target among the
candidates on ten randomly selected websites. 129

6.1 Mean (SD) values of Precision, Recall and Accuracy over the five
test sets for Similo at varying thresholds 156

6.2 Mean (SD) values of Precision, Recall and Accuracy over the five
test sets for VON Similo at varying thresholds 157

6.3 Comparison of the mean (std deviation) of precision, recall and
accuracy of Similo vs. VON Similo, per subject application . . . 160

7.1 Comparison between OpenAI GPT-versions. 181
7.2 The number of located (and not located) web elements when

using one or zero examples included in the prompt. 182
7.3 Description of the localization result. 186
7.4 The total number of located (and not located) web elements for

the two approaches. 187
7.5 Example motivations from GPT-4 classified as comparison oper-

ator, semantic understanding, or context awareness. 191
7.6 Example motivations continued. 192

Chapter 1

Introduction

1.1 Overview

Software testing aims to ensure that the developed software works correctly, but
this process can be time-consuming and is therefore associated with considerable
cost [71, 73]. To alleviate these challenges, test automation has been proposed
to speed up the testing process, allowing for more frequent test runs, boosting
delivery speed, and helping to improve software quality [17, 28, 131]. One pri-
mary use of automation is regression testing, which aims to assess that changes
to the system under test (SUT) have not introduced new faults or otherwise
degraded the quality of the latest software version. Testers often use automated
regression test scripts, which, on a Graphical User Interface (GUI) level, aim to
mimic end-user interactions to verify the software’s behavior [103, 108]. How-
ever, each new software version can cause the scripts to fail, necessitating time
and resources to investigate the cause, report the problem, and repair/update
the script. This challenge is particularly true for GUI-level testing since GUI
elements often change with updates in the user interface but are also affected
by underlying system changes [26, 58, 152]. Another challenge with GUI test-
ing is that GUIs are designed for humans, not machines, making the interface
less ideal for machine comprehension, causing problems after GUI updates. A
common problem is not being able to locate the correct widget (i.e., visible GUI
component, like a button) during test execution, often resulting in a failed or
invalid test. Such a problem is less common in foundational tests like unit test-

2 Introduction

ing [131] that are designed for machine-to-machine interaction (i.e., test code
checking source code).

Test automation relieves the human testers from the tedious and time-
consuming effort of performing the tests manually [73] [71]. However, automa-
tion introduces new challenges in developing, maintaining, and running auto-
mated test scripts, some of which pertain to the technical aspects of automated
GUI testing [39, 72, 81, 115]. These challenges can outweigh the advantages of
automating the GUI test cases, especially when considering the creation or main-
tenance costs of the tests. This research aims to dig deeper into the challenges
associated with GUI-based test automation by identifying the key (i.e., most
prominent) challenges (and their root causes) and finding technical solutions
to mitigate them. Reducing the challenges might lead to a more widespread
adoption of GUI-based test automation in the industry.

We formulated two overall goals to guide our research:

• G1: Identify the key challenges related to GUI-based test automation.

• G2: Mitigate some of the key challenges using technical solutions.

The remainder of this Chapter is structured as follows. Section 1.2 gives a
background to software testing and GUI-based regression testing. Section 1.3
describes the problem and motivation behind this research. Research objectives
and questions are described in Section 1.4. We outline the research methods
used in this thesis work in Section 1.5. Section 1.6 presents an overview of the
studies we included in this thesis, and we discuss some threats to the validity
in Section 1.7. Finally, we synthesize the results and discuss the implications of
our work in Section 1.8 and outline possible future research in Section 1.9.

1.2 Background and Related Work
1.2.1 Software Testing
Figure 1.1 shows the classical V-model of software development that associates
phases of testing activities with software design phases [13]. The V-model can
be helpful when identifying test activities regardless if the team is following
a waterfall or agile software development approach. Each test phase in the V-
model corresponds to a phase on the software design side. While there are many
variations of the V-model, and each phase might have a different name, there
are typically at least these four test phases in the V-model:

1.2 Background and Related Work 3

Figure 1.1: The V-model of software development.

Unit testing: Unit tests are used to eliminate issues at the lowest level of
the code, here called a unit. A unit is the smallest independent entity and is
typically implemented as a function or procedure. The unit test verifies that the
unit is working as expected when isolated from any dependencies (e.g., other
functions) [107, 131].

Integration testing: Integration testing is the process of testing how dif-
ferent units of a system work together [82, 107]. This type of testing is valuable
because it can help to identify errors and bugs when two or more units are
connected, rather than just testing individual units.

System testing: System testing is used to evaluate the overall function-
ality of a system [107]. This testing type is often done by a team of testers
independent of the development team. Anand et al. described such an example
when testing a large mission-critical software system [34].

User acceptance testing: User acceptance testing is used to determine
whether or not a software application is acceptable to the end-user [107]. This
type of testing is typically performed by actual software application users rather
than by testing professionals.

4 Introduction

While unit- and integration testing are mainly designed based on architecture
and code (i.e., technical), the system- and user acceptance tests are primarily
created from end-user and system documentation (i.e., user-centered).

Regression testing is a type of testing that is used to verify that changes to
a system or application did not introduce new faults [132]. This type of testing
is typically done after changes have been made to the code base (e.g., after a
source code update or at the end of an iteration/sprint), and it is used to ensure
that the changes have not caused any new problems. The regression testing
typically involves running tests related to all the four types of tests displayed
in Figure 1.1 since a change might theoretically affect any part of the system.
While tests on a higher level of abstraction (e.g., acceptance tests) can find an
issue, a lower-level test (e.g., a unit test) might provide a quicker (i.e., since it is
typically run more often) and a more detailed clue to find the root cause of the
issue. In practice, only a subset of the tests in the complete regression test suite
might be selected for execution since there might not be time to run them all.
Using a subset of the complete regression test suite is especially common when
some tests must be performed manually due to time constraints. The subset is
selected based on many factors, e.g., the severity of a possible defect and the
likelihood that the changes have affected the tested functionality.

Exploratory testing is a type of software testing that is conducted without
following a specific test plan or script [59, 83]. This means that testers are free
to explore the software to find bugs and issues without being restricted by a
predetermined set of test cases. Exploratory testing is often used to supplement
regression testing to pinpoint faults the scripted tests do not find since they
do not follow a predefined path through the SUT, increasing the test coverage.
Some drawbacks of exploratory testing include the difficulties of replicating the
test results and the dependency of testers with domain knowledge [18].

Until now, we have only covered testing the functionality of a system (i.e.,
functional testing). However, to thoroughly test a system, we also need to
consider its quality aspects (i.e., non-functional testing), e.g., its performance,
usability, scalability, and reliability. Non-functional testing typically requires a
different set of tools and skill sets than are usually employed with functional
testing. However, we will not go into more detail about non-functional testing
since this research focuses on testing a system’s functionality through the user
interface.

1.2 Background and Related Work 5

1.2.2 Automated Software Testing

Test automation is a process of entirely or partially automating the creation,
maintenance, and execution of test cases for software and is a replacement or
a supplement to manual testing. Automated tests are typically executed faster
than manual tests and can cover more scenarios than manual execution (given
the same time constraints). The drawbacks of automated tests are that they
can be expensive to create and maintain [94, 108] and typically require spe-
cialized skills, like programming, to develop and maintain the scripts [55, 108].
Automated tests can fail to detect some issues since they typically only check
a subset of the SUT output. For example, an output field indicates an error
by changing color (e.g., red), but there is no step in the test case that checks
the color of the text field. In contrast, with manual tests, humans can use their
cognitive ability to identify defective behaviors that are not explicitly defined
in the test case.

The goal of software testing is to assess the quality of the software so that we
know when the software is ready for release [107]. Until the software is released,
we must also identify issues and drawbacks to know what to fix. To assess
the quality of the software, we need sufficient test coverage [130]. A high test
coverage becomes increasingly challenging to achieve as the software increases
in size and when the calendar time and resources (e.g., the number of testers)
for testing activities are limited. Test automation is valuable since we can
achieve a higher test coverage, resulting in a better quality estimate. The cost
of maintaining (i.e., repairing and updating) the tests will also increase when
the software grows since the regression test suite increases in size proportional
to the software (when targeting the same test coverage). Therefore, keeping the
maintenance cost of tests low is vital since it might exceed the benefits of higher
test coverage.

One popular concept mentioned in a book by Mike Cohn [52] is to divide
tests into three layers visualized as a pyramid in Figure 1.2. The three layers
are (1) Graphical User Interface (GUI) Tests, (2) Service Tests, and (3) Unit
Tests. Although simple, the test pyramid implies that we should combine tests
of various granularity and that it likely contains more unit tests than GUI tests
since they are less complex and faster to execute. While Unit- and Service Tests
are typically automated in a regression test suite, it is still a common practice
in the industry to execute GUI Tests manually despite the possible benefits of
automation.

A common practice in object-oriented programming is to create one test class
for each unit (e.g., a class) of the system. The test class needs to be maintained

6 Introduction

Figure 1.2: The test pyramid.

when the class that contains the functionality is updated, resulting in an addi-
tional maintenance cost. While unit testing requires skills in programming and
unit testing frameworks (e.g., jUnit or nUnit), unit testing plays an important
role during software development [173].

Service tests check that a service works as intended. These tests are usu-
ally done by sending a request to the service and checking the response using
some form of protocol (e.g., HTTP, SOAP, or REST). While service testing is
sometimes performed manually, there are a wide variety of tools for automated
service testing, like SoapUI or Postman.

1.2.3 Automated GUI testing
GUI testing tests an application using its graphical user interface to ensure it
functions and behaves correctly. Sometimes, we also include testing that the user
interface is user-friendly or follows specific rules, but this type of testing is not
the main focus of this research. Many tools are available for GUI testing, like
Selenium, Appium, Eggplant, Sikuli, EyeAutomate, TestComplete, Ranorex,
and Watir. We can divide GUI test tools into three generations based on their
technology for locating and interacting with the GUI components [23].

1.2 Background and Related Work 7

Coordinate based: The first generation of GUI test automation tools uses
screen coordinates when deciding where, for example, to click on the screen.
This technique is simple and works on any user interface, but relying on screen
(or window) coordinates makes the scripts sensitive to GUI components that
change location. Coordinate-based localization might have been feasible for full-
screen applications but more problematic for window-based applications that we
can resize and move to any part of the screen. Moving or resizing the window
would cause all the window’s GUI components to change location, thereby likely
making a coordinate-based script fail during test execution.

Component based: Second-generation tools extract GUI components from
the user interface of the application to test. The test tool interacts with the
GUI components to simulate actions (e.g., a click) or extract information (e.g.,
the value from a text field) suitable for checking an outcome. The type of the
GUI components extracted depends on the System Under Test (SUT). For a
web application, web elements are extracted from the document object model
(DOM) of a web page. Second-generation tools do not have the same weakness
as first-generation tools since the coordinate is only one of many properties we
can extract from a GUI component. However, the technique requires extracting
GUI components from the user interface, which makes the technique dependent
on the implementation of the SUT. Tool vendors often try to handle this depen-
dency by providing an interface (or API) to use when interacting with different
types of applications (e.g., web, Windows, Mac, Android, Flash). However, the
problem is that each interface comes with its own limitations. In some cases, it
might be simple (e.g., for a pure HTML application), and in other cases, it is
difficult or almost impossible to extract all of the GUI components (e.g., a Flash
application) using the interface. Some examples of component-based tools for
web applications are Selenium1, Protractor2, and Playwright3.

Second-generation tools often support recording (and replaying) test scripts
since manually extracting all the properties of the GUI components is time-
consuming [17]. While recording a test script is fast compared to writing
the script and extracting properties manually, it typically produces fragile test
scripts that require constant maintenance when the tested application evolves
(i.e., is updated or refined) [94]. This maintenance work increases with the size
of the test suite for several reasons. One reason is that the initially recorded
scripts need to be re-recorded when the SUT changes since the layout or GUI
component properties might have changed. To avoid replacing many (or all)

1https://www.selenium.dev/
2https://www.protractortest.org/
3https://playwright.dev/

8 Introduction

recordings when the SUT changes, it is a common practice to restructure the
test scripts to reuse commonly used scripts and GUI components. This work
requires programming knowledge since it resembles structuring code in a typi-
cal software project. Another problem with maintaining an ever-increasing set
of recorded tests is the repository containing the recorded properties extracted
from the GUI components. We need to merge the components in an older repos-
itory with those in the newly recorded repository to avoid re-recording each test
since we would only like to maintain one instance of each GUI component,
avoiding many copies.

Visual GUI Testing: Third-generation tools use the pictorial user interface
(e.g., the pixels on the screen) and image recognition to locate GUI components
and to check the expected outcome [23]. As with tools based on coordinates,
we can use Visual GUI Testing (VGT) tools with any application, regardless
of implementation. Scripts, including images, are straightforward for a manual
tester to understand and can be read as manual step-by-step instructions. One
example script that uses the Windows calculator application can be seen in
Figure 1.3.

The script contains four mouse-click actions using images to find the coor-
dinate to click on the screen. Note that this technique resembles coordinate-
based testing with the difference that the coordinates are retrieved dynamically
by searching for an image on the screen. Given that the image recognition re-
turns with the correct coordinate, this technique compensates for moving GUI
components and reduces the maintenance cost caused by manually updating
the target coordinates. The last command in the VGT script verifies that a
certain image is visible on the screen. Checking images makes it possible to
assert expected conditions in VGT tools. Many VGT tools also support opti-
cal character recognition (OCR) to read text or values into the script. There
are several tools that support VGT, like Sikuli [168], EyeAutomate (previously
called jAutomate) [31], EggPlant [5], and Unified Functional Tester (UFT) [91].

1.3 Problem and Research Motivation

Record and replay tools were popular many years ago, being advertised as
recording once and replaying the recorded scripts any number of times. What
began as an appealing vision of test automation at a low cost ended when people
realized that the recorded scripts were not robust and needed restructuring and
constant maintenance [94, 118].

1.3 Problem and Research Motivation 9

Figure 1.3: A VGT script testing the Windows calculator.

Despite the widespread adoption of automated code and API verification
testing through unit and integration tests, manual testing via the GUI remains
a common practice. The preference for manual testing before implementing
test automation implies that there are challenges associated with automating
GUI-based tests. These challenges, which diminish the effectiveness of GUI test
automation compared to manual methods, are well-documented in the literature
[138, 156]. Unit testing consists of test code interacting with code, and service
tests simulate requests from external systems (i.e., application interfaces). In
contrast, GUI tests are triggered by human interaction with the system using
the user interface. In other words, unit and service tests interact with functions
or interfaces designed to be used by machines, while GUI tests interact with
interfaces designed for humans, giving us one possible explanation (i.e., hypoth-
esis) as to why GUI testing is different from unit and service testing that the
industry has successfully adopted.

By using test automation, we take advantage of the speed and accuracy of the
machines. Still, we hypothesize that when it comes to automated GUI testing,
we experience a lack of tolerance to GUI changes in the machine-executed scripts
that humans possess, making the scripts seem fragile (i.e., non-robust) during
automated test execution.

10 Introduction

Figure 1.4: Two versions of the amazon.com website.

Figure 1.4 shows two versions (newer and older) of the amazon.com website
menu (i.e., excluding content). Menu options with corresponding functionality
have been given a frame with identical colors. In this example, we note that
some menu options have moved (i.e., changed location within the GUI), and
some options have a different caption (e.g., "Returns & Orders" vs. "Orders").
A coordinate-based tool would have failed to locate most of the menu options
in this example since they have changed location. However, component-based
and VGT tools might succeed in locating most of the GUI components, at least
the ones that have not both changed location and caption. In this case, the
challenge regards how to successfully locate GUI components that have both
been relocated and changed the caption.

Another problem with GUI test automation is the need for programming
skills required when maintaining the automated test cases. Programming skills
are especially needed when the test suite increases in size since maintaining an
automated script resembles structuring source code in a software development
project where you need reusable functions and follow good design patterns [32].
Automated tests are often sensitive (i.e., fragile) to changes in the GUI of the
SUT. Setting up a rigid test environment and mastering the test automation
tools and frameworks requires skills and knowledge. Failing to set up a stable
foundation for GUI test automation will likely result in unstable test scripts
that require constant maintenance. We could reduce the cost of creating and
maintaining automated GUI tests by finding a way (i.e., a tool or an approach)
to lower the technological threshold, making automation easier, faster, and more
accessible for a broader range of human resources (i.e., both developers and non-
developers).

1.4 Research Objectives and Questions 11

1.4 Research Objectives and Questions
Figure 1.5 shows the relationship between this thesis’s goals, objectives, and
research questions. The overall research goals, introduced in Section 1.1, are
foremost to identify the key (most prominent) challenges of GUI-based test au-
tomation and, secondly, to mitigate some of the key challenges through technical
solutions. Although we realize that there are also non-technical solutions to the
challenges, we decided to begin by addressing the technical issues that will likely
affect non-technical aspects like guidelines or processes.

Objectives O2 and O3 were formulated based on results gathered from a sys-
tematic literature review (see Section 2) designed to identify the key challenges
in GUI-based test automation (objective O1):

• O1: Identify the key (most prominent) challenges of GUI-based test au-
tomation.

• O2: Propose and evaluate an approach to mitigate the challenges related
to automation skills and model-based test approaches.

• O3: Develop and evaluate an approach to mitigate the challenge of robust
identification of GUI widgets.

For the second objective (O2), we ended up with the concept of Augmented
Testing that utilizes an Augmented Layer placed between the manual tester
and the SUT. The Augmented Layer provides two theoretical benefits. The
first is an easy and reliable way of recording user actions (e.g., mouse clicks and
keystrokes). Secondly, we can use the Augmented Layer to insert information
in the eyesight of the manual tester to, for example, highlight the next action
to perform (e.g., the next test step in a test case).

For the third objective (O3), we devised an approach that uses a GUI wid-
get’s multiple properties (e.g., name, ID, text) when evaluating the similarity
of two widgets. This approach, named Similo, can be utilized to find the next
widget to interact with (i.e., among available widgets on the screen) that is most
similar to the target widget (i.e., that contains the recorded properties).

The objectives were addressed by the following research questions:

• RQ1: What are the key (most prominent) challenges of GUI-based test
automation?

• RQ2: What impact can our proposed concept (i.e., Augmented Testing)
have on mitigating the challenges related to automation skills and model-
based test approaches?

12 Introduction

Overall Goal Goals Objectives Research Questions
inspires overcoming addressed by

On overcom-
ing challenges

with GUI-based
test automation

G1: Identify the
key challenges

G2: Mitigate challenges

O1: Identify the key
challenges in GUI-

based test automation

O2: Propose/evaluate
mitigation strategies

O3: Develop/evaluate
an approach for

robust identification

Chapter 2
(Systematic Literature Review)

RQ1: What are the key (most prominent)
challenges of GUI-based test automation?

Chapters 3-4

RQ2: What impact can our proposed concept
have on mitigating the challenges related to au-

tomation skills and model-based test approaches?

Chapters 5-7

RQ3: What impact does our proposed ap-
proach have on mitigating the challenge
of robust identification of GUI widgets?

Figure 1.5: An overview of research goals, objectives, and questions.

1.4 Research Objectives and Questions 13

Study A
(SLR)

Why many Challenges
with GUI test Automa-
tion (will remain)(IST)

Study D
(Experiment)

Similarity-based web el-
ement localization (Sim-
ilo) for robust test au-
tomation (TOSEM)

Study B
(Workshop Study)

Augmented Testing:
Industry Feedback To
Shape a New Testing
Technology (ICSTW)

Study E
(Experiment)

Robust web element
identification for evolv-
ing applications by con-
sidering visual overlaps
(ICST)

Study C
(Empirical Study)

On the Industrial Appli-
cability of Augmented
Testing: An Empirical
Study (ICSTW)

Study F
(Experiment)

Improving web element
localization by using a
large language model
(STVR)

RQ1 (challenges) RQ3 (robust identification of GUI widgets)

RQ2 (automation skills and model-based test approaches)

Figure 1.6: An overview of studies answering the research questions.

• RQ3: What impact does our proposed approach (i.e., Similo) have on
mitigating the challenge of robust identification of GUI widgets?

The remainder of this Section elaborates on the objectives and associated
research questions. Figure 1.6 presents an overview of the studies designed to
address the objectives and answer our research questions. Included studies are
presented chronologically on a timeline (i.e., from left to right). Our research
began with a systematic literature review (SLR) to identify the challenges re-
ported in academic papers that contain empirical evaluations in collaboration
with the industry (Study A, detailed in Section 2). We started working on the
SLR and had the results before conducting the remaining studies. However,
the long process of publishing the SLR resulted in a publication date later than
studies B and C.

Study A answers the first research question (RQ1), while the remaining
studies answer the second and third research questions (RQ2 and RQ3). The
SLR classifies the challenges ranging from essential to accidental, visualized in
Figure 1.7. We consider challenges essential if they are inherent to a specific
technology or approach and as accidental when it is possible to eliminate the
challenge through technology or improved ways of working [43].

The SLR pinpoints four accidental challenges (i.e., that we can mitigate
with technical solutions) that have remained a problem for the industry for
many years and that still exist today (challenges C2, C3, C18, and C19 in
Figure 1.7). Three of the four (C3, C18, and C19) accidental challenges are

14 Introduction

Figure 1.7: The key challenges related to GUI-based test automation arranged
from essential to accidental difficulties.

1.5 Research Methodology 15

addressed in studies B, C, D, E, and F. Study B answers RQ2 and proposes a
novel technique called Augmented Testing and an academic tool called Scout
that addresses the challenges related to the need for automation and program-
ming skills (C18) and the problem of creating and maintaining model-based
tests (C19). While Study B only evaluates the technique and the tool by receiv-
ing feedback from the industry, Study C continues by testing the tool on real
applications downloaded from SourceForge. Study D answers RQ3 and targets
the challenge related to locating GUI elements in a robust way (C3) by eval-
uating the proposed algorithm, called Similo, on 48 public web applications.
The web element localization algorithm Similo is improved further in Study E
(now called VON Similo), where we validate the performance on a similar set of
web applications. Study F proposes and evaluates VON Similo LLM, which im-
proves upon the VON Similo approach by utilizing the semantic understanding
and context awareness of large language models.

1.5 Research Methodology
A research methodology encompasses a study’s approach, strategy, and reason-
ing to gain new knowledge [158]. While methodology is the broad approach to
acquiring knowledge, research methods are the specific tools and techniques for
gathering and analyzing data. Validity in a study refers to the extent to which
results are accurate and unbiased [143]. In this thesis, we follow the guidelines
from Runesson and Höst that categorized four aspects of validity: construct
validity, internal validity, external validity, and reliability [143]. Each research
methodology has different characteristics and, therefore, varying levels of inher-
ent beneficial/detrimental research validity traits [112]. Runesson and Höst for-
mulated four types of research methodologies based on Robson’s classification:
descriptive, exploratory, explanatory, and improving [143]. Descriptive research
aims to describe a contemporary situation or phenomenon. A case study is one
example of descriptive research [143]. Exploratory research focuses on observing
subjects in their natural environment, forming findings from observations. The
data, often collected using interviews or surveys, is mainly qualitative [159].
Explanatory research quantifies a relationship or compares groups to identify a
cause-effect relationship. The collected data is mainly quantitative and often
gathered from a controlled experiment [159]. Improving research attempts to
identify improvements to a studied phenomenon. Examples include design sci-
ence and action research [142, 146]. Quantitative research uses numerical data,
while qualitative research uses non-numerical data to evaluate a phenomenon.

16 Introduction

Table 1.1: Overview of the research methods, data collection methods, and data
analysis methods presented in this thesis.

Chapters
Research Method 2 3 4 5 6 7
Systematic Literature Review X
Workshop Study X
Quasi-Experiment X
Experiment X X X
Data Collection Method 2 3 4 5 6 7
Snowballing X
Workshop X
Questionnaire Survey X
Quantitative data collection X X X
Data Analysis Method 2 3 4 5 6 7
Thematic Analysis X X
Statistical Analysis X X

This research initially collected qualitative data about challenges (that are still
valid today) with GUI-based test automation using a systematic literature re-
view (SLR). The focus of the research than changed to aim towards finding
novel solutions that target the challenges identified by the SLR and evaluate
the solutions mainly using quantitative methods. Table 1.1 shows an overview
of the research methods, data collection methods, and data analysis methods
used in this thesis work. The remainder of this Section outlines and motivates
our selection of research methodologies.

1.5.1 Systematic Literature Review
A systematic literature review (SLR) is a secondary study that uses a well-
defined methodology to identify, analyze, and interpret evidence in an unbiased
and repeatable way [87]. We used an SLR as the first method to gather chal-
lenges of GUI test automation from the literature and to answer research ques-
tion one (RQ1). The SLR followed the guidelines provided by Kitchenham et
al. [87] when establishing the research goal, defining research questions, identify-
ing search strings, defining inclusion/exclusion criteria, performing Fleiss Kappa
analysis, including/excluding publications, snowballing [157], performing data
analysis and coding, and presenting the results.

1.5 Research Methodology 17

The SLR found eight key challenges, four of which were classified as possible
to solve or mitigate using technical solutions. These became the focus of the
research as the remaining challenges are classified as inherent to the GUI test
automation area and are not as easily, or perhaps even impossible, to solve. The
remaining research methods in the thesis are used when attempting to mitigate
the four chosen challenges identified by the SLR.

1.5.2 Case Study

A case study is a research method that involves an in-depth, detailed examina-
tion of a phenomenon, which can be a single unit, such as a person, group, event,
or organization [143]. Case studies are usually conducted over some time, and
they often involve extensive data collection and analysis. While case studies do
not typically generate causal relationships like experiments, they can provide a
deeper understanding of the phenomena due to being conducted in a real-world
environment [143]. This thesis work does not contain any case studies, as ini-
tially planned, due to the outbreak of COVID-19, which forced us to interrupt
an ongoing case study at Ericsson designed to compare Augmented Testing and
Scout with a contemporary approach. At the same time, we abandoned our ini-
tial ambition of following the technology transfer model suggested by Gorschek
et al. [69].

1.5.3 Workshop Study

A workshop study is a research method where experts meet to discuss and gen-
erate ideas or solve problems around a particular topic, similar to focus groups
[88]. In Study B, we used workshops with consultants from the industry to eval-
uate the novel concept of Augmented Testing (AT). We selected this method to
collect creative solutions, ideas, and opinions in a collaborative and time-efficient
way. The downside of a workshop study is that group dynamics can bias the
results, and therefore, the outcome may not represent all testers. In Study B, a
prototype for augmented testing (i.e., Scout) was first demonstrated and later
used by the participants in a workshop study involving ten software develop-
ers to gather their perceptions about the benefits and drawbacks of augmented
testing and the tool Scout.

18 Introduction

1.5.4 Experiment
An experiment is a scientific procedure performed to test a hypothesis or verify
a phenomenon in a controlled environment [159]. While experiments offer more
control over variables and a stronger basis for causal inference than case stud-
ies and quasi-experiments, they may lack real-world applicability (i.e., lower
construct validity). Still, we decided to go for an experiment in a controlled
environment when testing our hypothesis that our proposed web localization so-
lution had higher effectiveness (i.e., more correctly located web elements) than
the baseline approaches. A benefit of using experiments, apart from testing a
hypothesis, is the convenience of replicating our design when comparing a novel
solution or approach to ours. Using a case study would also be possible, but
since it is conducted in a real-world environment, it would be harder to isolate
the study results from the interference of confounding variables. We selected
48 (40 in Study E) of the most popular web applications for the experiments
to enhance the construct validity and performed three experiments in this the-
sis work. The experiment in Study D evaluates the difference in robustness
and time efficiency (i.e., dependent variables) between web element localization
approaches (i.e., independent variable) on two different versions of 48 web ap-
plications. In Study E, we evaluated the concept of Visually Overlapping Nodes
(VON) using a similar experiment that compared VON Similo (i.e., a version of
Similo enhanced by the VON concept) with the original version of Similo. The
experiment used a ground truth set of 1163 manually collected web element
pairs extracted from 40 web applications. Results were evaluated based on the
approach’s precision, recall, and accuracy. A final experiment was conducted in
Study F, using 804 web element pairs extracted from 48 real-world web appli-
cations to compare VON Similo LLM against the baseline algorithm (i.e., VON
Similo). Again, we compared the effectiveness and efficiency (i.e., dependent
variables) of both approaches (i.e., independent variable). We also analyzed
motivations from the LLM for all instances where the original approach (i.e.,
VON Similo) failed to find the right web element.

1.5.5 Quasi-Experiment
A quasi-experiment is an observational study, similar to an experiment, that uses
a treatment or intervention that is not randomly assigned [159]. This means that
subjects are not randomly assigned to the control groups, which can introduce
bias into the results. Quasi-experiments were used in Study C to evaluate the
AT concept and the Scout prototype in collaboration with practitioners from the

1.6 Overview of Chapters 19

industry. In the evaluation, quasi-experiments and questionnaire surveys were
performed in three workshops with 12 practitioners from two Swedish compa-
nies (Ericsson and Inceptive). The quasi-experiments were based on guidelines
for software engineering experiments with dependent and independent variables
[159]. The quasi-experiments were used to measure time (i.e., dependent vari-
able) given an approach (i.e., independent variable). The workshops in Study C
involve human subjects within their domain, making it impossible to control for
all confounding variables (e.g., the participant’s hardware, previous knowledge,
and allocated resources).

Quasi-experiments are realistic and relevant when conducted in a real-world
environment. Another benefit is the convenience of using existing subjects and
conditions instead of relying on random assignment. The drawbacks are lower
internal validity (i.e., compared to experiments) due to random assignment and
more challenging to make causal inferences due to confounding variables.

1.6 Overview of Chapters

This section contains an overview of the publications included in this thesis,
from the initial SLR to the papers that propose and evaluate novel approaches
and concepts.

Study A: Systematic Literature Review

Study A, presented in Chapter 2, is titled "Why many challenges with GUI Test
Automation (will) remain".

Context: Automated testing is ubiquitous in modern software development
and used to verify requirement conformance on all levels of system abstraction,
including the system’s graphical user interface (GUI). GUI-based test automa-
tion, like other automation, aims to reduce the cost and time for testing com-
pared to alternative, manual approaches. Automation has been successful in
reducing costs for other forms of testing (like unit- or integration testing) in
industrial practice. However, we have not yet seen the same convincing re-
sults for automated GUI-based testing, which has instead been associated with
multiple technical challenges. Furthermore, the software industry has struggled
with some of these challenges for more than a decade with what seems like only
limited progress.

20 Introduction

Objective: This systematic literature review takes a longitudinal perspec-
tive on GUI test automation challenges by identifying them and then investi-
gating why the field has been unable to mitigate them for so many years.

Method: The review is based on a final set of 49 publications, all reporting
empirical evidence from practice or industrial studies. Statements from the
publications are synthesized, based on a thematic coding, into 24 challenges
related to GUI test automation. Key challenges (i.e., the most reported) were
also classified as essential or accidental difficulties (see Figure 1.7).

Results: The most reported challenges were mapped chronologically (i.e., in
time) and further analyzed to determine how they and their proposed solutions
have evolved over time. This chronological mapping of reported challenges shows
that four of them have existed for almost two decades.

Conclusion: Based on the analysis, we discuss why the key challenges with
GUI-based test automation are still present and why some will likely remain
in the future. For others, we discuss possible ways of how the challenges can
be addressed. Further research should focus on finding solutions to the identi-
fied technical challenges with GUI-based test automation that can be resolved
or mitigated. However, in parallel, we also need to acknowledge and try to
overcome non-technical challenges.

Contributions: The specific contributions of this literature review are:

• The technical challenges of test automation through the GUI reported by
academic literature.

• A longitudinal perspective of how the key challenges have evolved.

• To what extent the key challenges can be resolved or mitigated using
technical solutions.

Study B: Workshop Study

Study B, presented in Chapter 3, is titled "Augmented Testing: Industry Feed-
back To Shape a New Testing Technology".

Context: Manual testing remains the predominant approach for software
acceptance and system testing in the industry. While test automation has been
proposed as a solution, both manual and automated testing face challenges that
limit their effectiveness and return on investment. There is a pressing need for a
new testing approach that can overcome these challenges and enhance efficiency
and cost-effectiveness.

1.6 Overview of Chapters 21

Objective: In this paper, we introduce a novel approach referred to as
Augmented Testing (AT). AT involves testing by adding a visual layer between
the tester and the System Under Test (SUT), superimposing information on the
GUI.

Method: To explore the benefits and drawbacks of AT, we developed a
prototype and conducted an industrial workshop study involving 10 software
developers. The study aimed to gather the practitioners’ perceptions and in-
sights regarding AT’s potential advantages and limitations.

Results: The workshop study revealed a higher number of benefits associ-
ated with AT than drawbacks. Notable benefits included improved clarity on
what to test and what had been tested, as well as a reduction in manual work.

Conclusion: The findings from this study suggest that AT holds promise
as a valuable testing technique. Its potential benefits, especially in terms of test
clarity and reduced manual effort, warrant further research and development.
AT could offer the industry new advantages that are currently lacking in existing
testing approaches.

Contributions: The specific contributions of this study are:

• A presentation of a novel technique we refer to as Augmented Testing
(AT) and its realization in a prototype.

• The collection of perceived benefits and drawbacks of AT from an in-
dustrial workshop study that can be used for further development of the
technique and prototype.

Study C: Empirical Study

Study C, presented in Chapter 4, is titled "On the Industrial Applicability of
Augmented Testing: An Empirical Study".

Context: Testing applications with graphical user interfaces (GUI) is a
vital yet time-consuming task in software development. GUI test automation
tools aim to streamline this process but often come with challenges related to
script development and maintenance.

Objective: To address these challenges, a novel technique called Augmented
Testing (AT) has been proposed. AT involves testing the System Under Test
(SUT) using an Augmented GUI that provides guidance and records interac-
tions.

Method: In this study, we evaluate a prototype tool called Scout that
follows the AT concept. We conducted an industrial empirical study involving

22 Introduction

12 practitioners from two Swedish companies, Ericsson and Inceptive. The
evaluation included quasi-experiments and questionnaire surveys.

Results: The results indicate that Scout allows for the creation of equivalent
test cases faster than using two popular state-of-practice tools, with statistical
significance. This suggests that AT offers cost-value benefits and can be applied
to industrial-grade software. It also addresses deficiencies in state-of-practice
GUI testing technologies, particularly in terms of ease-of-use.

Conclusion: AT, as exemplified by the Scout prototype, presents a promis-
ing approach to improving GUI test automation. It offers advantages in terms
of efficiency and ease of use, making it a valuable addition to the toolkit of
software testers.

Contributions: The specific contributions of this study are:

• An overview of a novel technique for GUI test automation called Aug-
mented Testing.

• Results from an empirical evaluation of AT with industrial practitioners
of the efficiency of Scout, a prototype for AT, compared to two state-of-
practice approaches for GUI test automation.

Study D: Experimental Study

Study D, presented in Chapter 5, is titled "Similarity-based web element local-
ization for robust test automation".

Context: Non-robust (fragile) test execution is a commonly reported chal-
lenge in GUI-based test automation despite much research and several proposed
solutions. A test script needs to be resilient to (minor) changes in the tested
application but, at the same time, fail when detecting potential issues that re-
quire investigation. Test script fragility is a multi-faceted problem. However,
one crucial challenge is how to reliably identify and locate the correct target
web elements when the website evolves between releases or otherwise fail and
report an issue.

Objective: This study proposes and evaluates a novel approach called
similarity-based web element localization (Similo), which leverages information
from multiple web element locator parameters to identify a target element using
a weighted similarity score.

Method: This experimental study compares Similo to a baseline approach
for web element localization. To get an extensive empirical basis, we target 48
of the most popular websites on the Internet in our evaluation. Robustness is

1.6 Overview of Chapters 23

considered by counting the number of web elements found in a recent website
version compared to how many of these existed in an older version.

Results: Results of the experiment show that Similo outperforms the base-
line; it failed to locate the correct target web element in 91 out of 801 considered
cases (i.e., 11%) compared to 214 failed cases (i.e., 27%) for the baseline ap-
proach. The time efficiency of Similo was also considered, where the average
time to locate a web element was determined to be four milliseconds. However,
since the cost of web interactions (e.g., a click) is typically on the order of hun-
dreds of milliseconds, the additional computational demands of Similo can be
considered negligible.

Conclusion: This study presents evidence that quantifying the similarity
between multiple attributes of web elements when trying to locate them, as in
our proposed Similo approach, is beneficial. With acceptable efficiency, Similo
gives significantly higher effectiveness (i.e., robustness) than the baseline web
element localization approach.

Contributions: The specific contributions of this study are:

• A novel approach for more robust web element localization based on com-
parison of the similarity of web element locator parameters.

• An empirical study that shows the effectiveness and time efficiency of the
proposed approach compared to the baseline approach.

Study E: Experimental Study

Study E, presented in Chapter 6, is titled "Robust web element identification
for evolving applications by considering visual overlaps".

Context: Fragile (i.e., non-robust) test execution is a common challenge for
automated GUI-based testing of web applications as they evolve. Despite recent
progress, there is still room for improvement since test execution failures caused
by technical limitations result in unnecessary maintenance costs that limit its
effectiveness and efficiency. One of the most reported technical challenges for
web-based tests concerns how to locate a web element used by a test script
reliably.

Objective: This study proposes the novel concept of Visually Overlapping
Nodes (VON) that reduces fragility by utilizing the phenomenon that visual web
elements (observed by the user) are constructed from multiple web elements in
the DOM that overlap visually.

Method: We demonstrate the approach in a tool, VON Similo, which ex-
tends the state-of-the-art multi-locator approach (Similo) that is also used as

24 Introduction

the baseline for an experiment. In the experiment, a ground truth set of 1163
manually collected web element pairs from different releases of the 40 most
popular web applications on the internet are used to compare the approaches’
precision, recall, and accuracy.

Results: Our results show that VON Similo provides 94.7% accuracy in
identifying a web element in a new release of the same SUT. In comparison,
Similo provides 83.8% accuracy.

Conclusion: These results demonstrate the applicability of the visually
overlapping nodes concept/tool for web element localization in evolving web
applications and contribute a novel way of thinking about web element local-
ization in future research on GUI-based testing.

Contributions: The main contributions of this work are:

• Insights into the relative power of different web element attributes for web
element localization.

• A generally applicable, yet novel, concept called Visually Overlapping
Nodes (VON).

• An improved version of similarity-based web element localization (Similo)
that implements VON (VON Similo).

Study F: Experimental Study

Study F, presented in Chapter 7, is titled "Improving web element localization
by using a large language model".

Context: Web-based test automation heavily relies on accurately finding
web elements. Traditional methods compare attributes but don’t grasp the
context and meaning of elements and words. The emergence of Large Language
Models (LLMs) like GPT-4, which can show human-like reasoning abilities on
some tasks, offers new opportunities for software engineering and web element
localization.

Objective: This study introduces and evaluates VON Similo LLM, an en-
hanced web element localization approach. Using an LLM, it selects the most
likely web element from the top-ranked ones identified by the existing VON
Similo method, ideally aiming to get closer to human-like selection accuracy.

Method: An experimental study was conducted using 804 web element
pairs from 48 real-world web applications. We measured the number of correctly
identified elements as well as the execution times, comparing the effectiveness
and efficiency of VON Similo LLM against the baseline algorithm. In addition,

1.7 Threats to Validity 25

motivations from the LLM were recorded and analyzed for all instances where
the original approach failed to find the right web element.

Results: VON Similo LLM demonstrated improved performance, reducing
failed localizations from 70 to 39 (out of 804), a 44% reduction. Despite its
slower execution time and additional costs of using the GPT-4 model, the LLM’s
human-like reasoning showed promise in enhancing web element localization.

Conclusion: LLM technology can enhance web element identification in
GUI test automation, reducing false positives and potentially lowering mainte-
nance costs. However, further research is necessary to fully understand LLMs’
capabilities, limitations, and practical use in GUI testing.

Contributions: The specific contributions of this study are:

• A novel approach that can improve web element localization by utilizing
a large language model.

• An empirical study that shows the effectiveness and efficiency of the pro-
posed approach compared to the baseline approach.

• A qualitative content analysis on the motivations gathered from the LLM,
explaining the main aspects used when comparing the similarity of two
web elements.

1.7 Threats to Validity
In this section, we present some of the primary threats to the validity of the
results presented in this thesis, divided into four aspects suggested by Runeson
et al. [143].

Construct validity: How we selected databases and constructed the search
query in our systematic literature review could impact the publications included.
We took steps like breaking down the query, using a full-text search tool, and
manual review to minimize this impact.

We included four publications during snowballing, suggesting that our search
query string could have been better. Still, we decided it was good enough since
we argue that a few missed publications will likely not significantly impact the
results. In the worst case, we have missed some challenges of importance, but
given the authors’ extensive empirical understanding of the area, we perceive
it as unlikely. Additionally, for a challenge to be classified as "key", it had to
be mentioned by four or more publications, making it even less likely that we
missed a key challenge.

26 Introduction

Internal validity: The authors of this study possess significant industrial
experience, which presents a potential issue for the study’s internal validity. We
recognized that this experience could introduce bias in synthesizing and coding
challenges (Chapter 2). Despite our awareness of this risk and our efforts to
make impartial judgments, there remains a possibility of bias.

External validity: Although this thesis work aims to overcome some of the
challenges related to the entire field of GUI-based test automation, our surveys,
quasi-experiments, and experiments were all performed using web applications
only, leaving out other types of GUI applications, such as Android and Win-
dows apps. In a previous version of Scout (i.e., older than the version used in
Chapters 3 and 4), we used image recognition instead of Selenium WebDriver
with the benefit of working with any application having a GUI regardless of its
implementation. However, using image recognition has a few drawbacks: (1) the
results will be affected by the reliability of the selected image recognition algo-
rithm, and (2) the test environment needs to be carefully controlled since results
rely on the size of the screen or window. Therefore, using Selenium WebDriver
as the driver was a more practical choice that mitigated some confounding vari-
ables. In the Similo study (Chapter 5), we selected to use web applications in
the experiment when comparing Similo to other approaches since the selected
baseline approaches (i.e., absolute XPath, relative ID-based XPath, Selenium
IDE, Montoto, and Robula+) were all designed and evaluated by locating web
elements in web applications. By convenience, it was easiest to continue us-
ing the same set of web applications (with minor changes) in the two studies,
improving the Similo approach (Chapters 6 and 7).

While Android and Windows applications do not have a DOM structure like
web applications do, they typically arrange GUI elements in a tree structure
where GUI elements have properties (e.g., position, size, label, id, name). Both
Scout (our demonstrator tool for Augmented Testing) and Similo (all versions)
could conceptually work with any GUI model containing GUI elements with
some arbitrary set of properties arranged in a hierarchy. Therefore, we postulate
that our solutions would generalize to most GUI applications, but more research
is needed.

Reliability: The author’s expertise and familiarity with GUI-based test
automation influence the analysis and categorization of challenges in the SLR
(Chapter 2). This personal influence poses a risk to the consistency and re-
peatability of our study. If other researchers were to replicate the SLR, there
might be slight variations in how they synthesize and describe the challenges.
However, such differences would be minor and wouldn’t significantly alter our
main findings.

1.8 Discussion 27

1.8 Discussion

In this Section, we synthesize the results from the six studies and discuss the
implications and limitations of our findings.

Challenges of GUI-based Test Automation: Our SLR (Chapter 2)
found that many of the challenges in GUI-based test automation have been
around for a long time (i.e., often more than ten years). We classified four
of the most reported challenges as possible to mitigate using a technical so-
lution (i.e., accidental). One of those challenges is the need for automation
and programming skills when designing reliable and maintainable GUI-based
test automation tests. Another is the time and cost associated with creating
and maintaining model-based tests caused by SUT changes. Fragile test scripts
caused by non-robust identification of GUI widgets (e.g., web elements) is a
third challenge and one of the most frequently reported. The fourth challenge is
the need to synchronize the test execution between the SUT and the test runner,
which is closely related to the challenge of robust widget identification. This
thesis work proposes and evaluates solutions for the first three challenges. In
contrast, the fourth synchronization challenge is only affected (i.e., a side effect)
by a more reliable way of identifying GUI widgets since it is a common practice
to add dynamic delays halting the script execution until a widget appears.

Augmented Testing Advantages: We proposed and evaluated a con-
cept called Augmented Testing (AT) and a prototype research tool called Scout
(Chapters 3-4) in an attempt to mitigate the challenges associated with the
need for programming and test automation skills when creating and maintain-
ing model-based tests (i.e., two of the key accidental challenges). The aim was
to reduce or eliminate the need for programming skills by offering an alterna-
tive way of creating and maintaining tests utilizing an Augmented Layer (i.e.,
augmented information projected on top of the SUT GUI). Our hypothesis was
that creating and maintaining tests using an Augmented Layer is a more effi-
cient and user-friendly way than the more traditional script-based approach that
requires programming skills while still providing similar benefits. We performed
workshops, quasi-experiments, and questionnaire surveys in collaboration with
participants represented by three industrial companies and concluded that the
participants find AT and Scout promising and that the concept can provide
cost-value benefits when compared to state-of-practice approaches. However,
we have only gathered perceptions or empirical data from a small number of
participants (i.e., 22 in total from three companies) and compared Scout with
two state-of-practice tools (i.e., Selenium and Protractor). More research is

28 Introduction

needed by, for example, evaluating AT in real-world scenarios in collaboration
with testers from the industry.

More Robust Web Element Localization: We proposed and evaluated
approaches (i.e., Similo, VON Similo, and VON Similo LLM) that attempt
to improve the robustness of identifying GUI widgets in comparison to exist-
ing approaches like the Robula+ algorithm suggested by Leotta et al. [100]
(Chapters 5-7). A more robust approach to locating web elements can reduce
maintenance efforts (e.g., due to fewer broken scripts to repair). However, we
must still modify the automated tests as the SUT changes. We can integrate
an approach like Similo into existing test scripts to, for example, replace the
findElement method in scripts that utilize Selenium WebDriver [11]. Such an
approach (i.e., tool) could also automatically manage (i.e., store and repair) the
properties used by Similo (i.e., when finding the best match), reducing manual
maintenance even further. Repairing the properties could be done by replacing
existing ones with new ones as they change. However, this may also destroy
correctly stored property values with invalid values in the case of a failed test.
We have not evaluated repair in this thesis work since we only decided to focus
on the localization problem.

With a more robust test execution, testers can shift their focus from main-
taining and repairing failing test cases to designing and creating tests that ensure
the software delivers value to the end-user. They could also spend more time
on other test activities like exploratory, performance, and usability testing.

In this thesis work, we have only evaluated the effectiveness of locating
web elements based on oracles created by the authors, i.e., the web element
pairs selected in an older and newer version of the same web page. However,
the definition of the same web element is not trivial. We could define it as a
web element with the exact same set of attributes located at the same location
(XPath). Another definition can compare pixels to ensure they have all identical
RGB values. With a less strict definition, it is more complicated to determine
when two elements are close enough to represent the same web element (e.g.,
a button or an input field). Simply selecting the most similar (i.e., according
to some measurements) is not always adequate since that would result in false
positives, likely causing a failed (or inaccurate) test execution. One solution to
this problem is to locate the most similar web element when performing actions
(e.g., a button click) and mitigate the risk of false positives by including checks
verifying that we are still on the correct test execution path. However, we did
not investigate such a solution in this thesis work.

The test synchronization problem is closely related and sometimes difficult
to distinguish from the challenge of robust localization of web elements. The-

1.9 Future Work 29

oretically, we could add a long (or infinite) delay after each performed action
to ensure that we are in the following application state (e.g., the next page).
To be in the correct application state is crucial for ensuring that the performed
action will get the same result as a previous test run (also assuming that the
SUT is deterministic). We can only make that assumption when assuming that
the SUT behaves deterministically. Without determinism, the SUT can go into
an unknown application state with unpredictable outcomes. However, waiting
for a long time is impractical since it lowers the efficiency of the tests. The
challenge is to wait long enough (but not longer than necessary) to ensure that
we are in the expected application state and that the SUT is ready to receive
the next action. When the delay is not long enough, we might end up in a sit-
uation where the web element that we aim to interact with is not yet loaded or
visible in the GUI, with the result that the most similar web element is not the
correct one (i.e., since it is not yet available). Triggering an action (e.g., a click)
on an incorrect web element will likely take us on a different path, eventually
resulting in a failed test execution. In this thesis, we have deliberately ignored
this problem by assuming we are already in the correct application state, leaving
the test synchronization challenge to future work.

1.9 Future Work

The integration of large language models, as seen with the VON Similo LLM
approach, indicates the potential role of AI in revolutionizing GUI-based test
automation. Recent work by Park et al. and Feldt et al. suggests that the AI-
driven approach to GUI testing is gaining traction [63, 135]. In the near future,
we anticipate AI agents able to handle all aspects of regression testing for a GUI
application (i.e., from design to test execution). These agents would operate
based on straightforward instructions in natural language. The instructions
could range from detailed step-by-step test cases (e.g., click on the save button)
to high-level goals (e.g., test this website). This transformative approach could
enhance efficiency and reduce the need for human intervention. The shift would
also make the testing process more accessible, as the reliance on specialized
scripting would diminish, paving the way for a more user-friendly approach to
GUI regression testing.

In conclusion, while our research provides significant advancements in GUI-
based test automation, the journey has just begun. The potential use of AI when
mitigating accidental and perhaps even some of the essential challenges signals

30 Introduction

an opportunity for future research advancements in GUI-based test automation
that can benefit the industry.

Chapter 2

Why many challenges with
GUI Test Automation (will)
remain

Abstract

Context: Automated testing is ubiquitous in modern software development
and used to verify requirement conformance on all levels of system abstrac-
tion, including the system’s graphical user interface (GUI). GUI-based test au-
tomation, like other automation, aims to reduce the cost and time for testing
compared to alternative, manual approaches. Automation has been successful
in reducing costs for other forms of testing (like unit- or integration testing)
in industrial practice. However, we have not yet seen the same convincing re-
sults for automated GUI-based testing, which has instead been associated with
multiple technical challenges. Furthermore, the software industry has struggled
with some of these challenges for more than a decade with what seems like only
limited progress.

Objective: This systematic literature review takes a longitudinal perspec-
tive on GUI test automation challenges by identifying them and then investi-
gating why the field has been unable to mitigate them for so many years.

Method: The review is based on a final set of 49 publications, all reporting
empirical evidence from practice or industrial studies. Statements from the

32 Why many challenges with GUI Test Automation (will) remain

publications are synthesized, based on a thematic coding, into 24 challenges
related to GUI test automation.

Results: The most reported challenges were mapped chronologically and
further analyzed to determine how they and their proposed solutions have
evolved over time. This chronological mapping of reported challenges shows
that four of them have existed for almost two decades.

Conclusion: Based on the analysis, we discuss why the key challenges with
GUI-based test automation are still present and why some will likely remain
in the future. For others, we discuss possible ways of how the challenges can
be addressed. Further research should focus on finding solutions to the identi-
fied technical challenges with GUI-based test automation that can be resolved
or mitigated. However, in parallel, we also need to acknowledge and try to
overcome non-technical challenges.

Keywords: System Testing, GUI Testing, Test Automation, Systematic
Literature Review

2.1 Introduction

Manual testing is time-consuming, repetitive, and error-prone to perform for a
human tester [73] [71]. Test automation, using techniques like unit testing [131]
and record-replay [17], have been suggested as solutions to these challenges and
proven successful in practice. Another reason for test automation is that the
tests can be executed faster and more frequently and, therefore, deliver faster
feedback about the quality of the software under development [108]. While au-
tomated testing is the state of practice for checking code and APIs (using unit-
and integration testing), it is still common to manually test a system under
test (SUT) through the graphical user interface (GUI) without any automa-
tion. That manual testing, using the GUI, is preferred before test automation
indicates that there are challenges related to GUI-based test automation that
reduces its applicability compared to manual GUI-based testing. This obser-
vation is supported by literature, which has frequently reported on challenges,
problems, and limitations with GUI test automation.

This systematic literature review (SLR) [87] aims to take a longitudinal per-
spective to find the technical challenges reported by academic literature with
GUI-based test automation during the last 20-years to determine how the most
reported (key) challenges have evolved and if there have been attempts to mit-
igate them. In this SLR, the focus is mainly on testing the functionality of

2.1 Introduction 33

the SUT by using the GUI, not testing or checking that the user interface is
presented, or rendered, correctly on the screen.

There have been previous attempts that try to identify the challenges (tech-
nical or otherwise) of software test automation. For instance, in 2012, Rafi et
al. presented an SLR, which identifies 9 benefits and 7 limitations of automated
software testing [138]. The literature review identified several benefits: "Less
human effort" and "Increased fault detection". However, "Automation can not
replace manual testing" and "False expectations" were identified as some of the
limitations. A more recent SLR study by Wiklund et al., published in 2017, re-
ported impediments, both technical and non-technical, provided similar results
on software test automation [156].

In this SLR, unlike the previous that studied the entire field of test automa-
tion, the focus is on test automation performed using the GUI only. Hence, a
subset of the software test automation field. Additionally, the SLR is delimited
to the technical challenges of the approach that can be addressed using tech-
nical solutions, leaving out any non-technical perspectives such as behavioral,
process, or business aspects. Furthermore, the SLRs published by Rafi et al.
and Wiklund et al. present limitations and impediments on a relatively high
abstraction level, an effect of their studies looking at such a large field of study.
As an example, Rafi et al. reported the limitation: "Difficulty in maintenance
of test automation" and Wiklund et al., the impediments: "Maintenance Costs"
and "Fragile Test Scripts". In contrast, the goal of this SLR is to dig deeper
into the technical challenges to identify their root causes to acquire further in-
sights into their solution. Finally, the previous SLRs do not present solution
attempts, how the challenges have evolved, and if the challenges are possible to
solve or mitigate, thereby motivating the need for this SLR that investigates the
complexities and longevity of each unresolved challenge in more detail. Know-
ing how consistently the challenges were described over a more extended time
period, and any solution attempts, will make it possible to identify solutions or
mitigation strategies for the key (most commonly reported) technical challenges.

The specific contributions of this literature review are:

• The technical challenges of test automation through the GUI reported by
academic literature.

• A longitudinal perspective of how the key challenges have evolved.

• To what extent the key challenges can be resolved or mitigated using a
technical solution.

34 Why many challenges with GUI Test Automation (will) remain

This paper is structured as follows: The research process behind the sys-
tematic literature review is described in Section 2.2. Section 2.3.1 contains
the results obtained by gathering information from the included publications.
Section 2.4 discusses the results presented in Section 2.3.1 and synthesised in
Section 2.3.2. We will give our conclusions and some work to consider for the
future in section 2.6.

2.2 Systematic Literature Review

The SLR presented in this work is based on the guidelines for conducting sys-
tematic literature reviews in software engineering, presented by Kitchenham et
al. [87]. An overview of the literature review process is shown in Figure 2.1.
The number of included publications after each step is presented in Table 2.1.

Figure 2.1: Literature review process

Table 2.1: Overview showing the number of included publications per step.

Step Description No included
4 Search Relevant Publications 185
5 Screen of Relevant Publications 95
8 Include/Exclude Publications 39
9 Snowballing Selected Publications 49

2.2 Systematic Literature Review 35

1. Establish Research Goal: The research goal of this SLR is to find the
key challenges, based on empirical evidence found in literature, associated with
testing a system automatically through its GUI. Knowing the key challenges
and their root-causes is crucial for future research to find effective solutions to
mitigate them efficiently.

2. Define Research Questions: The research goal has been broken down
into the following research questions:

• RQ1: What are the academically reported technical challenges for auto-
mated testing of an application through its GUI?

• RQ2: How have key challenges for GUI-based test automation evolved in
the last 20 years?

• RQ3: To what extent can the key challenges be resolved or mitigated using
a technical solution?

3. Identify Search Strings: The search string sought to find publications
that contain empirical results about the challenges of automated testing/check-
ing of software applications/programs through the GUI. Keywords related to
benefits were included in the search since a discussion about benefits is likely to
contain statements concerning challenges as well.

The query string was constructed from keywords and synonyms to these
keywords, which were formulated based on the authors’ industrial experience
and taking keywords used in previous literature reviews into consideration [138,
156]. Below, we present a decomposition of the search string.

Focus on software applications or programs: (software OR application
OR program) AND

Focus on automated testing/checking: ("test automation" OR "auto-
matic testing" OR "automated testing" OR "automated test" OR "automatic
checking" OR "automated checking" OR "automated regression") AND

Focus on user-interfaces or human-machine interfaces: ("user inter-
face" OR GUI OR "human machine interface" OR HMI) AND

Contains benefits and/or challenges: (challenge OR benefit OR advan-
tage OR improvement OR limitation OR drawback OR problem OR pitfall)
AND

Contains empirical studies or experiments: (empirical OR industry
OR industrial OR practice OR "case study" OR survey OR experiment)

Resulting in the final query string: (software OR application OR pro-
gram) AND ("test automation" OR "automatic testing" OR "automated testing"

36 Why many challenges with GUI Test Automation (will) remain

OR "automated test" OR "automatic checking" OR "automated checking" OR
"automated regression") AND ("user interface" OR GUI OR "human machine
interface" OR HMI) AND (challenge OR benefit OR advantage OR improve-
ment OR limitation OR drawback OR problem OR pitfall) AND (empirical OR
industry OR industrial OR practice OR "case study" OR survey OR experiment)

Exclude publication released before year 2000: Due to the rapid evo-
lution of the software engineering field, we decided to exclude all publications
published before the year 2000. This choice was made to delimit the number of
found papers and because papers older than this are considered out-of-date and
not applicable to modern software systems.

4. Search Relevant Publications: Four of the most widely used literature
databases available today for the software engineering field were selected for the
search: Scopus, IEEE Xplore, ACM, and Wiley. The final search string and the
filter that excludes all publications published before the year 2000 were used in
the selected databases. The database searches resulted in a total of 185 included
publications distributed chronologically, as shown in Table 2.2.

Table 2.2: Search Results

Scopus IEEE Xplore ACM Wiley
69 matches 58 matches 35 matches 23 matches

5. Screen of Relevant Publications: All publications included in the
search results were downloaded and imported into the tool Mendeley [170].
Mendeley was used to remove any duplicate publications found in more than one
database. Non-research publications, publications that were not peer-reviewed,
or not written in English were also excluded resulting in 95 remaining publica-
tions.

6. Inclusion/Exclusion Criteria: We formulated three tiers of inclu-
sion/exclusion criteria as shown in Table 2.4, 2.5 and 2.6. Publications that
satisfied all of the inclusion criteria and did not match any of the exclusion cri-
teria for a tier were included and evaluated by the criteria in the next tier until
all the tiers were covered. Table 2.3 contains definitions for some of the terms
that we used in the inclusion/exclusion criteria.

The three tiers were defined as:

• Tier 0 - Check Preconditions: Analysis of paper metadata to ensure
that the paper followed the base criteria to be eligible for further analysis.

2.2 Systematic Literature Review 37

• Tier 1 - Check Title and Abstract: Analysis of the title and abstract
of each paper to get an indication that it would include support evidence
usable to meet the research objective.

• Tier 2 - Read Full Text: Analysis of the complete paper to ensure it
would provide evidence to meet the research objective.

Table 2.3: Definitions

Term: Definition:
peer-reviewed article Peer-reviewed articles are written by experts and are re-

viewed by several other experts in the field before the arti-
cle is published to ensure the article’s quality.

Empirical evidence Any result acquired or observed by a human (researcher)
in a reported experiment or case study (regardless of size).

Graphical User Interface (GUI) A form of user interface that allows users to interact with
electronic devices through graphical icons and visual indi-
cators.

System Under Test (SUT) The system that is being tested for correct operation.
Document Object Model (DOM) A cross-platform and language-independent interface that

treats an XML or HTML document as a tree structure
wherein each node is an object representing a part of the
document.

Widget A component of a GUI, that enables a user to perform a
function or access a service.

Automated Testing Automated testing or test automation is a method in soft-
ware testing that makes use of special software tools to
control the execution of tests and then compares actual
test results with predicted or expected results. Test exe-
cution is done automatically with little or no intervention
from the test engineer. For this study, automated testing
regards only tests of the functionality or features of the
SUT, not its quality characteristics (like usability or per-
formance) nor the visual appearance (that widgets are ren-
dered correctly) on the SUT’s user interface.

Automated Testing through the
GUI

Automated testing of a system through emulation of hu-
man/user usage of the SUT. The emulation can be per-
formed using physical robotics (e.g. a robot arm) or purely
through software (e.g. using OS-level events to type on the
keyboard or move the mouse cursor), or a combination of
these. Access to widgets is given by the accessibility API
of the operating system, DOM objects in the SUT, internal
GUI controls or other technical interfaces. These are all
considered valid methods for emulating a human/user.

38 Why many challenges with GUI Test Automation (will) remain

Table 2.4: Inclusion/Exclusion criteria tier 0

Inclusion criteria: Exclusion criteria:
Included publications must be peer-
reviewed. See the definition of peer-
reviewed article in Table 2.3.

Exclude all publications published
before year 2000 since they are con-
sidered out-of-date and not applica-
ble to modern software systems.

Include workshop, conferences, book
chapters, and journal publications.

Exclude short publications (less than
6 pages).

Include publications written in the
English language only.

Exclude gray literature (non-peer-
reviewed books, blogs, etc)
Exclude bachelor/master/Ph.D. the-
ses.

Table 2.5: Inclusion/Exclusion criteria tier 1

Inclusion criteria: Exclusion criteria:
Include publications that indicate
that they report empirical evidence
about benefits or challenges of auto-
mated testing/checking through the
GUI.

Exclude publications that do not
study automated testing/checking
through the GUI.

Exclude publications that do not
cover benefits or challenges of auto-
mated testing/checking through the
GUI.
Exclude publications that do not
contain any empirical evidence.
Exclude publications where the em-
pirical evidence does not report ben-
efits or challenges of automated test-
ing/checking through the GUI.

2.2 Systematic Literature Review 39

Table 2.6: Inclusion/Exclusion criteria tier 2

Inclusion criteria: Exclusion criteria:
Include publications that contain
empirical evidence about the bene-
fits or challenges of automated test-
ing/checking through the GUI.

Exclude publications that do not
study automated testing/checking
through the GUI.

Exclude publications that do not
cover benefits or challenges of auto-
mated testing/checking through the
GUI.
Exclude publications that do not
contain any empirical evidence.
Exclude publications where the em-
pirical evidence does not report ben-
efits and/or challenges of automated
testing/checking through the GUI.

7. Fleiss Kappa Analysis: The leading researcher evaluated the remain-
ing 95 publications using the inclusion/exclusion criteria for tier 0 and ran-
domly selected 20 (more than 20 percent) of the included publications for Fleiss
Kappa analysis [64]. The authors of this publication reviewed the randomly
selected publications based on the inclusion/exclusion criteria for Tier 1 and
Tier 2, marking papers that they believed should be included, excluding the
rest. Fleiss Kappa analysis, a measure of the agreement between reviewers
(inter-rater agreement), was then calculated. The result was 0.60, indicating a
moderate or close to a substantial agreement between the reviewers [92]. This
agreement among the three reviewers was considered good enough for the lead-
ing researcher to continue to review the remaining publications and gave us con-
fidence that the inclusion/exclusion criteria were suitably defined. Of course, a
threat remains that a few papers are overlooked, but we argue that the impact
of a few incorrectly excluded or included publications would not likely have a
significant impact on the results.

8. Include/Exclude Publications: All publications that were not ran-
domly selected and reviewed during the Fleiss Kappa analysis were reviewed,
by the leading researcher, using the inclusion/exclusion criteria for tier 1 and 2.

40 Why many challenges with GUI Test Automation (will) remain

The review resulted in 39 included publications, counting also the publications
there were included during the Fleiss Kappa analysis.

9. Snowballing Selected Publications: There are many possible reasons
for not finding a relevant publication during the database searches. One is that
the author of the publication uses a different vocabulary than the one used in
the search string. Another reason is that the search keywords are not found
since most literature databases only search a portion of the publication, like the
title and abstract, but not the full text.

To verify that all relevant papers had been captured by the search, backward
and forward snowballing, as described by Wohlin [157], was performed on the
39 included publications. Publications identified during the snowballing session
that seemed relevant for the study, based on reading their title or abstract, were
collected into a set of candidates. The leading researcher then assessed all the
candidates using the inclusion/exclusion criteria to ensure that we analyzed all
added or discarded candidates with the same rigor and systematic review as
previously included publications. Using the existing inclusion/exclusion criteria
is perceived to strengthen the approach’s reliability since these criteria had been
previously agreed upon by the researchers. This snowballing session resulted in
five additional publications that passed the inclusion/exclusion criteria. Addi-
tionally, since performing an SLR is a lengthy process, another five publications
were later discovered that had been published while writing this paper, resulting
in a final total of 49 included publications.

10. Data Analysis and Coding: Analysis of the included publications
was performed by the leading researcher using thematic analysis and coding [54].
186 statements related to technical challenges about GUI-based test automation
were identified and extracted from the 49 included publications. A statement
is defined as a sentence, quote, or paragraph from the author of the publication
based on experience, a conviction, or concluded from a result. All statements
are extracted from publications that report empirical results making it more
likely that the statements are relevant and valid. The codes (C1...Cn) were
formulated iterative, i.e., without any starting set, from the statements, focusing
on challenges. Each extracted statement was mapped to an existing code when
the leading researcher believed that the statement related to the same challenge
or mapped to a new code otherwise. After coding, the codes were analyzed for
semantic equivalence and merged if such was found. The merger was done by
formulating a new code that replaced both existing codes, or by removing one
of the existing codes.

The resulting set of codes and statements were then used as evidence to
draw the study’s conclusions and answer its research questions.

2.3 Results and Synthesis 41

2.3 Results and Synthesis

Here we present an overview of the results and answer the first research question
(RQ1) in Section 2.3.1. The answers to the remaining research questions (RQ2
and RQ3) are presented in Section 2.3.2 after further analysis and synthesis of
the reported challenges.

2.3.1 Results

Table 2.7 contains a list of the 49 included publications that contain one or
more statements related to challenges associated with GUI-based test automa-
tion. The coded and mapped challenges from the reviewed literature are listed
in Table 2.9 with references to this paper’s reference list. This table thereby rep-
resents a summary of all the currently known challenges explicit to automated
testing through an application’s GUI, representing an answer to RQ1.

To provide an overview, Figure 2.2 visualizes the key (most commonly re-
ported) challenges on a timeline sorted on the year that the publication, which
reports the challenge, was published. The criteria for a challenge to be consid-
ered "key" is that four or more publications can triangulate it. Each dot in the
timeline represents one, or more, publications that were published during that
year. An index number specifies the number of publications when more than
one. The figure shows that several of the challenges have existed for almost 20
years but that the majority of challenges are newer, i.e., published within the
last seven years.

To gain further insights, Figure 2.3 also visualizes what application platform
(desktop, web, or mobile), the empirical evaluation was performed on and how
these platforms appear over time. As shown in the figure, the first period, from
the year 2000 to 2004, only contains two empirical evaluations, both on desktop
applications. In the second and third periods (2005-2015), research on desktop
applications is dominant, while in the fourth period, web-applications become
dominant, and research in mobile applications are on the rise. We also note
that the number of published papers increase over time, indicating a growing
interest in empirical studies of GUI-based test automation.

42 Why many challenges with GUI Test Automation (will) remain

Table 2.7: Included publications

No: Title: Year:
1 Hierarchical GUI Test Case Generation Using Automated Planning [115] 2001
2 Effective Automated Testing: A Solution of Graphical Object Verification [148] 2002
3 Experimental Assessment of Manual Versus Tool-Based Maintenance of GUI-

Directed Test Scripts [72]
2009

4 Automated GUI Testing for J2ME Software Based on FSM [77] 2009
5 Repairing GUI Test Suites Using a Genetic Algorithm [78] 2010
6 Debug Support for Model-Based GUI Testing [76] 2010
7 Experiences of System-Level Model-Based GUI Testing of an Android Application

[149]
2011

8 AutoBlackTest: Automatic Black-Box Testing of Interactive Applications [109] 2012
9 Transitioning Manual System Test Suites to Automated Testing: An Industrial

Case Study [28]
2013

10 Graphical User Interface Testing Using Evolutionary Algorithms [94] 2013
11 Murphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing

[19]
2014

12 On the Industrial Applicability of TextTest: An Empirical Case Study [25] 2016
13 An analysis of automated tests for mobile Android applications [145] 2016
14 Continuous Integration and Visual GUI Testing: Benefits and Drawbacks in In-

dustrial Practice [30]
2018

15 Introducing automated GUI testing and observing its benefits: an industrial case
study in the context of law-practice management software [67]

2018

16 Augusto: Exploiting Popular Functionalities for the Generation of Semantic GUI
Tests with Oracles [111]

2018

17 Using a Pilot Study to Derive a GUI Model for Automated Testing [164] 2008
18 A “More Intelligent” Test Case Generation Approach through Task Models Ma-

nipulation [46]
2017

19 Evaluating the TESTAR tool in an industrial case study [37] 2014
20 Comparing Automated Visual GUI Testing Tools: An Industrial Case Study [66] 2017
21 Robust Test Automation Using Contextual Clues [166] 2014
22 Obstacles and opportunities in deploying model-based GUI testing of mobile soft-

ware: a survey [80]
2012

23 PESTO: Automated migration of DOM-based Web tests towards the visual ap-
proach [101]

2018

24 Design and industrial evaluation of a tool supporting semi-automated website test-
ing [108]

2014

25 Automatic testing of GUI-based applications [110] 2014
26 An event-flow model of GUI-based applications for testing [114] 2007
27 Pattern-based GUI testing: Bridging the gap between design and quality assurance

[118]
2017

28 Model-based Approach to Assist Test Case Creation, Execution, and Maintenance
for Test Automation [74]

2011

29 Efficient and Change-Resilient Test Automation: An Industrial Case Study [150] 2013
30 Reuse of model-based tests in mobile apps [55] 2017
31 Automated Testing of Software-as-a-Service Configurations using a Variability

Language [136]
2015

32 Reducing GUI Test Suites via Program Slicing [36] 2014
33 Improved GUI Testing using Task Parallel Library [134] 2016
34 Introducing Model-Based Testing in an Industrial Scrum Project [62] 2012
35 Development and Maintenance Efforts Testing Graphical User Interfaces: A Com-

parison [90]
2016

36 Automated Test Input Generation for Android: Are We Really There Yet in an
Industrial Case? [171]

2016

37 Behind the Scenes: An Approach to Incorporate Context in GUI Test Case Gen-
eration [35]

2011

38 Using combinatorial testing to build navigation graphs for dynamic web applica-
tions [155]

2016

39 Automating Web Application Testing from the Ground Up: Experiences and
Lessons Learned in an Industrial Setting [57]

2016

2.3 Results and Synthesis 43

Table 2.8: Included publications, continued

No: Title: Year:
40 Combining Automated GUI Exploration of Android apps with Capture and Replay

through Machine Learning [33]
2019

41 Using Multi-Locators to Increase the Robustness of Web Test Cases [99] 2015
42 Visual GUI Testing in Practice: limitations, Problems and Limitations [23] 2015
43 Call Stack Coverage for GUI Test-Suite Reduction [113] 2006
44 A Black-Box Based Script Repair Method for GUI Regression Test [81] 2018
45 A New Algorithm for Repairing Web-Locators using Optimization Techniques [60] 2018
46 Apply computer vision in GUI automation for industrial applications [48] 2019
47 ROBULA+: An Algorithm for Generating Robust XPath Locators for Web Testing

[100]
2016

48 Offline Oracles for Accessibility Evaluation with the TESTAR Tool [56] 2019
49 Conceptualization and Evaluation of Component-based Testing Unified with Vi-

sual GUI Testing: an Empirical Study [29]
2015

Table 2.9: Reported challenges related to GUI-based test automation

Challenge: Reported by publication no:
C1 Application changes break execution 1, 3, 10, 12, 14, 21, 24, 27, 29, 31, 35, 39, 41,

43, 44, 46, 49
C2 Synchronizing/timing between tests and
SUT

1, 6, 19, 20, 32, 35, 39, 40, 42, 45

C3 Robust identification of GUI widgets 2, 7, 9, 20, 23, 24, 29, 42, 44, 45, 46, 49
C4 Changed screen resolution 13, 29, 40
C5 Test automation of dynamic applications 11, 13, 19, 21, 29, 32, 38, 39
C6 Fails for unknown reason 14, 24
C7 Non-determinism 40, 49
C8 Sensitivity to business logic 20
C9 Cascading error 29
C10 Environment/Hardware configuration 13, 21, 29
C11 Tool challenges 9, 11, 12, 13, 19, 22, 24, 29, 36, 42
C12 High maintenance cost of test cases 10, 24
C13 Long setup time 22, 24
C14 HMI must be available 10, 34
C15 Hard to reproduce the error 6, 19, 24
C16 Less effective in detecting faults 15
C17 Requires workflow changes 22
C18 Requires automation or programming
skills

7, 9, 12, 19, 22, 24, 30, 31, 39, 46

C19 Creating/maintaining model based tests 6, 8, 11, 16, 22, 26, 27, 28, 31, 34, 40, 48, 49
C20 State space explosion during MBT 1, 4, 5, 16, 17, 18, 25, 26, 27, 32, 37, 38, 43,

49
C21 Low test coverage during MBT 19, 36
C22 Identify less faults when using an oracle 19
C23 Limited applicability of models 26, 49
C24 Slow test execution during MBT 19, 30

44 Why many challenges with GUI Test Automation (will) remain

Figure 2.2: The key challenges mapped on a timeline. Each dot represents a
statement from one or more publications published during the year.

Figure 2.3: The type of software application selected for the empirical evaluation
distributed over four time-periods.

2.3.2 Synthesis
To answer RQ2, the SLR results were analyzed further and synthesized to iden-
tify how consistent the challenges remained (e.g., how consistently they were
described) over the studied time period. Four of the challenges were reported
repeatedly during 17 years or more, as can be seen in Figure 2.2, and one (C5)
was only reported during a four-year-long time-period.

2.3 Results and Synthesis 45

The analysis also showed that the level of description of the challenges varied
and that some reported challenges were so generally defined that it is unlikely
that their description can aid in finding any candidate solutions. Such challenges
must first be broken down, i.e., further detailed, to be adequately understood.
As an example, Mahmud et al. reported in 2014, that practitioners with test
automation experience mentioned that automated tests had to be rewritten or
re-recorded when the application changed. Mahmud et al. did not document
what explicit changes the practitioners perceived to be the underlying reason
for tests to be rewritten or re-recorded or if all changes had the same impact.
Such information would be valuable in guiding both development and research
efforts towards finding candidate solutions to aid the practitioners.

To answer RQ3 and better understand which challenges to address with
more focus and effort and which challenges to defer from or focus less effort
on, we need to distinguish different challenges. In the book "No silver bullet"
by Brooks et al., software engineering challenges are classified as essential or
accidental [43]. We argue that a similar analysis can add value here. Essential
challenges are inherent in the nature of software, whilst accidental challenges
are challenges today but not inherent. This classification implies that accidental
challenges can be resolved or mitigated through technical, or other, means. In
contrast, essential challenges are not necessarily solvable because they are so
fundamental, or significant, that no general solution can be perceived. In the
following descriptions of found challenges, we use Brooks et al. definitions to
classify the identified key challenges in an attempt to provide guidance for future
research. However, we decided to limit the definition of accidental challenges to
challenges that can be mitigated using a technical solution to match the scope
of this SLR. Therefore, our definition of an accidental challenge is that it can be
solved using a technical solution. Also, our definition of an essential challenge is
that any technological solution cannot completely resolve it. Hence, excluding
challenges related to human, process, or organizational aspects of GUI-based
test automation.

Application changes break test execution (C1): The most reported
challenge for automated GUI-based tests is that application changes cause tests
to fail, stated by seventeen publications between 2001 to 2018. Memon et al.
wrote in 2001 that regression testing of GUI applications is a challenge since
the user interface does not remain constant across successive versions of the
software [115]. A similar conclusion came from Jiang et al., in 2018, that scripts
made for the previous version of the SUT do no longer work well when the GUI
layouts change [81].

46 Why many challenges with GUI Test Automation (will) remain

This challenge is mainly essential since a significant change of the SUT will,
and should, break the test execution. Hence, a prerequisite of any technical
solution that seeks to eliminates this challenge must fail the test when the test
execution is expected to break, but otherwise pass. In particular, this challenge
relates to the oracle problem, i.e. what information, and how much information,
to use to determine correct SUT behavior [56].

As an essential challenge, we can conclude that this challenge is present
today and likely will not be entirely removed in the future. However, when
discussing this challenge, we must also consider the background to why the
SUT was changed. Some changes to the SUT are intentional, and the tests
might need to be adjusted accordingly to prevent the tests from failing during
execution. However, other changes are unintentionally caused by intentional
modifications to the SUT and might break the test execution since the tests
are not adjusted according to the unintentional changes. Furthermore, different
changes range in ease of detection. Significant changes, like a missing widget, are
simple for a human tester to spot, while minor changes, like the size or position
of GUI widgets, might be impossible for a human to notice. Unintentional minor
changes that cause the test execution to fail can be frustrating for the human
tester since the automated test scripts seem to break for no apparent reason.
Since the human tester would expect an intentional change to impact the tests,
further research should focus on finding solutions that reduce failures caused by
unintentional, and primarily minor, changes. For example, a technical solution
that provides a more robust identification of GUI widgets (C3) might prevent
minor changes to the SUT from breaking the test execution.

Synchronizing/timing between tests and SUT (C2): The challenge
of keeping the automated test scripts, or states in a model, in sync with the
tested application was reported by ten publications published between 2001 and
2019. This challenge stems from the need for tests to wait until the SUT is ready
to receive the next action, or event, to avoid the risk that the action does not
have the desired effect on the SUT. As an example, let us study the following
pseudo test script:

Step 1: Open the Report Dialog.
Step 2: Click on the Create Report button in the Report Dialog.
Step 3: Check that the Report has been created.

Since it may take some time to open the Report Dialog (step 1), there is a
risk that step 2 is performed before the Report Dialog and Create Report button
are visible. The Report might not be created if step 2 is performed before the

2.3 Results and Synthesis 47

Create Report button is ready to receive the click action, causing step 3 to fail.
A human, replicating the failure, would not perceive the same challenge, and
we observe that the script, in this case, would have reported a "false positive”
test result. However, and regardless, the test result still required investigation,
leading to unnecessary root-cause analysis costs. The solution to making the
test more robust would be to add synchronization, like static or dynamic delays,
between the steps.

However, as stated by Heiskanen et al., in 2010, a common cause of failure
in test runs are the delays between executing certain keywords on the SUT [76].
This statement is supported by Cheng et al. [48], in 2019, which stated that
"The timing to trigger a series of events may not always be the same between
two different runs. So, a straightforward replay is often infeasible."

The synchronization challenge has been reported repeatedly, from empiri-
cal evaluations on all types of applications (desktop, web, and mobile), during
an 18-year time-period and is likely still a challenge today, supported by two
publications published as recently as 2019. Since human testers do not seem
to experience this challenge when testing manually, but machines and software
often face issues, it is perceivable that this is a purely accidental, and technical,
challenge. Debroy et al. [57] suggest that static (or fixed) delays, e.g., a delay
of a few seconds, will solve this challenge but at the cost of making the script
execution unnecessarily slow. For instance, assume that the transition between
GUI states is 1.9 seconds. A delay of 2 seconds would then be sufficient to syn-
chronize the test execution and ensure that the next script action would happen
after the GUI state change, with only a penalty of 100-millisecond unnecessary
delay. Of course, these penalties should be kept as small as possible, but (1)
fine-tuning synchronization is time-consuming [25], and (2) having minor penal-
ties increases the risk that performance degradation in the application leads to
new false positives. For instance, in our example above that, the state transition
time increases from 1.9 to 2.1 seconds. Debroy et al., therefore instead suggests
the use of dynamic waits, e.g., waiting for a specific page title, or until the title
changes from a particular title. Another option is to wait for GUI widgets to
appear, for example, a headline, a text field, or a button.

The synchronization challenge is related to, or partly dependent on, the
challenge of robust identification of GUI widgets (C3) since the test execution
needs to be synchronized by waiting for correctly identified widgets. There-
fore, we pose that these two challenges (C2 and C3) are connected and that
a solution to C3 might also provide a possible solution, or mitigation, for the
synchronization challenges (C2).

48 Why many challenges with GUI Test Automation (will) remain

Robust identification of GUI widgets (C3): As stated, this challenge
is possibly related, or even the leading cause of many of the other reported
challenges. It might be one of the challenges that cause the test execution to
fail when the SUT changes (C1). A more robust widget detection would, per
definition, be more tolerant and possibly able to prevent unexpected failure. We
differentiate between expected and unexpected failures here since some changes
to the application are expected to cause failure while other changes are not. For
example, a missing widget is expected to fail the test execution, but a minor
change in a widget’s position should not cause the script to fail. Robust wid-
get identification of this type would possibly also mitigate the synchronization
challenge (C2) since dynamic waits rely on waiting for located widgets. The
challenges related to a changed screen resolution (C4) might also be reduced
since a reliable widget identification technique might be able to find the correct
widgets even if the widgets have been rearranged. Thummalapenta et al. [150]
give the example that some elements (widgets) might not appear in the same
location when the screen resolution changes, thus preventing the test execution
from continuing. Even tests that fail due to unknown reasons (C6) might be
partly caused by non-robust identification of widgets since failure due to timing
and widget identification can be hard to understand and explain. Hence, chal-
lenges reported in research may be incorrectly classified even though caused by
this underlying challenge.

The correct widget, like an input field or a button, first needs to be iden-
tified before verifying some of its properties or triggering an action. Failing to
identify the correct widget will most likely result in a failed script. The cor-
rect widget is, in this case, defined as the widget that the human tester that
created the script or model would select in a given situation. Note that the au-
tomated test execution should fail when the correct widget is not present since
that would have also prevented the human tester from continuing. Widgets
can, however, be located in several ways. Alégroth et al. [24] describe three
generations of techniques for automated GUI-based testing: coordinate-based,
component/widget-based, and Visual GUI Testing (image recognition). These
techniques are fundamentally different and, as such, have various benefits and
drawbacks. Research has shown that combinations of these techniques can have
positive net effects, which represent one possible solution to the problem [29].

Twelve publications reported challenges with reliable identification of wid-
gets from 2002 to 2019. Two of the papers bring up the challenge of using screen
coordinates. Four publications mention the challenge with component/widget-
based identification, seven of the publications talk about robustness issues re-
lated to image recognition, and one does not go into any technical details. Solv-

2.3 Results and Synthesis 49

ing or significantly reducing the challenges with robust identification of widgets
could have a notable impact on the success of the GUI-based test automation
field. There have been many attempts to solve or mitigate this challenge over
the years. Leotta et al. proposed, in 2015, a new type of locator, named multi-
locator, that uses a voting procedure for selecting the best candidate from a
set of locators [99]. Multi-locators might be one solution for reducing some of
the fragility issues when trying to locate widgets when testing an application
through the GUI. Another exciting technique, proposed by Yandrapally et al.,
for addressing the fragility challenge by improving the reliability of widget lo-
calization, is using contextual clues [166]. The idea is to mimic how humans
perceive an application by evaluating the target widget and the surrounding
widgets. Taking advantage of the surrounding widgets would, in theory, make
it possible to locate a widget even in the worst case when all of the locators,
associated with a widget, failed by using contextual information about the wid-
get’s neighbors. To automatically compensate for frequent changes and be able
to identify widgets in a continually changing GUI would perhaps increase the
stability of the automated tests and lower the maintenance cost of automated
tests. Therefore, we perceive this challenge to be accidental since it should be
possible to come up with a technical solution that can identify widgets with an
accuracy comparable to human testers. We base this assumption on recent ad-
vancements in oracle and GUI locator research, where significant improvements
to test execution robustness can be observed [99].

Test automation of dynamic applications (C5): Controlling the dy-
namic aspects of an application is not only a challenge for GUI-based test au-
tomation but rather a challenge shared by the entire field of test automation
and all types of applications. Dynamic aspects include, continuously changing
databases, dynamic GUI contents, application state transitions, and dependency
of external dynamic applications. The challenge is mentioned by eight publi-
cations during a four-year-long time-period between 2013 and 2016. Thum-
malapenta et al. [150] give an example: "if test setup does not remove such
entities created during the previous test run, scripts in the new run fail while
attempting to create an existing entity". Hence, an additional complexity with
testing dynamic applications is that the tests themselves may also be affecting
the system state when tests are executed. This implies that tests might need to
be executed in a specific order since the state change of previous states set the
preconditions for later tests.

Automating a dynamic application is an essential challenge compared to
a static application, placing significantly higher demands on the time and re-
sources needed to handle and prepare tests to deal with dynamic data in a

50 Why many challenges with GUI Test Automation (will) remain

robust, deterministic way. For instance, the application database might need
to be set to a specific state before starting the test execution, external systems
might need to be mocked, and test cases might need to be executed in a partic-
ular order to lay the foundation for stable test automation. While some of these
issues might be mitigated through technological advances, the core challenge of
non-deterministic SUT behavior will remain, making this a lasting challenge.

Tool challenges (C11): Tool related challenges were reported, for all plat-
forms, by ten publications published between 2012 and 2016. These challenges
are however different from each other, ranging from difficult installation [108]
[37] or lacking documentation [23] to technical issues like the one mentioned by
Alégroth et al. in 2015 [25]: "The main drawbacks are that the tool requires
hooks into the AUT’s GUI library which means TextTest is currently restricted
to Java and Python.".

These challenges range from minor drawbacks to severe maturity or stability
issues with the software products. While challenges with unique tools might be
accidental and possible to solve, the higher-level concept of "tool challenges", in
general, is an essential challenge since it is difficult, or even impossible, to find
one technical solution that addresses them all. For example, general solutions
how to make the user interface more user-friendly or how to make the application
more responsive.

Requires automation or programming skills (C18): Successful test
automation requires knowledge, experience and skills to master. Between 2011
and 2019, ten publications mentioned the lack of skills as a challenge in re-
gards to either test automation, test automation tools, or programming when
automating an application through the GUI. The need for development skills
were further explicitly specified by eight of the included papers. The need for
programming skills were highlighted by five papers [108] [136] [37] [55] [57] and
two papers stated a need for experience in writing regular expressions [25] or
XPath locators [100].

Minor skills in test automation or programming can be sufficient when only
creating a few test cases but, as with the case of software development, more
skills are needed when creating and maintaining an extensive suite of tests as
complexity increases with size. Many tools have targeted this challenge during
the years because skilled resources are typically hard to find and are more ex-
pensive to hire. Capture/replay (CR), or record/replay, tools is one approach
that attempts to simplify and speed up the process of creating and running
automated GUI-based test cases. However, as explained by Moreira et al., the
main drawback with CR tools is the cost of script maintenance [118]. Previously
recorded tests break easily when the GUI changes and this leads to consider-

2.3 Results and Synthesis 51

able manual labor to repair them. According to Moreira et al., this is often the
reason the CR methods are abandoned after a few software releases. Another
challenge emerges with CR when newly recorded test cases need to be merged
with existing test suites since this generally requires programming and skills
to deal with growing code complexity. The lack of skill is mostly an acciden-
tal challenge. It might be possible to find a technical solution that makes CR
tools capable of creating and maintaining stable test suites that can be used by
testers with less programming skills than today. One possible solution could be
to create and maintain the tests using an Augmented GUI proposed by Nass et
al. [119]. Lack of skills could also be seen as an essential challenge since test
automation skills will always be required regardless of any technical advances.
Hence, even if user-friendly tools can be developed, the purpose of the tools,
and their contextual use, must still be taught to the users.

Creating/maintaining model based tests (C19): The time and cost to
create and keep the model up to date with a continually changing GUI applica-
tion resemble the challenge of maintaining the test scripts to prevent application
changes from breaking the test execution (C1). This challenge is probably the
main reason why the industry has not yet embraced MBT. Memon et al. wrote,
in 2007, that models used for automated GUI testing are expensive to create
[114] and was confirmed by Aho et al. [19], in 2014, Patel et al. [136], in 2015,
and Moira et al. [118], in 2017. That model-based tests also require main-
tenance effort, to keep the models up to date when the SUT changes, is also
mentioned by three publications [76] [80] [62], from 2010 to 2012.

One option for avoiding the time-consuming work of manually creating the
models is to generate the models by traversing the SUT automatically. While
this approach makes it possible to generate thousands of test cases quickly,
they might not be effective or efficient in finding defects or providing adequate
coverage of the SUT. The dilemma is especially valid for GUI-testing since it
takes many magnitudes more time to execute tests on a GUI-level than on a unit-
level. Gupta et al. claimed, in 2011, that model-based approaches mainly focus
on test case generation but that it is not effective in real-life industry scenarios
[74]. Aho et al. provide supporting statements to Gupta, in 2014, that industry
adoption of model-based approaches for GUI-based test automation has been
insignificant despite many academic approaches to target the challenge [19].

The challenge reported on all application platforms, associated with the
creation/maintenance of model-based tests (C19), is accidental since automated
ways of generating models, like GUI crawling, lower model development cost.
It should be possible to find new or improve existing technical solutions that
target this challenge through further research. Instead, especially for GUI-based

52 Why many challenges with GUI Test Automation (will) remain

test automation, the underlying challenge is that the industry can not afford to
maintain and run several test technologies at the same time, e.g., script-based
and model-based tests. Thus, although the technologies have different benefits
and drawbacks, script-based testing is considered less costly and therefore comes
up on top. As such, there is still a need to find solutions for efficient modeling
of GUI applications to make MBT attractive for the industry.

State space explosion during MBT (C20): There are close to infinite
paths or scenarios through a typical GUI application. This presents a core chal-
lenge for model-based testing in terms of possible state-space to explore during
testing (also known as state-space explosion). Memon et al. [115] reported
in 2001 that the space of possible interactions with a GUI is high, and twelve
other publications have provided supporting observations of the challenge for
both desktop and web applications from 2006 to 2018.

As such, the state-space explosion challenge is essential. Any technical mit-
igation attempt to it must be able to navigate the state-space in such a manner
that it only finds scenarios that within the state-space that, for instance, provide
the best test coverage of the SUT or the best defect finding ability. However,
these solutions are workarounds to the problem since they still do not cover
the entire state-space, which, in theory, could be infinite and, therefore, never
completely covered. Mariani et al. proposed a machine-learning based solution,
called Augusto, that can efficiently and effectively test application-independent
functionalities (AIFs) while the rest of the SUT needs to be covered using ex-
isting approaches [111]. Examples of AIFs are common user interface patterns,
like authentication operations and CRUD (Create, Read, Update, Delete) oper-
ations. While it is still too early to know if the approach, proposed by Mariani
et al., works for the industry, it implies that machines can learn from human
behavior how to efficiently and effectively navigate through GUI applications
and thus avoid the essential state space explosion challenge. However, as the
challenge is considered essential, we perceive that even advanced solutions will
only avoid the challenge, never solve it entirely.

2.4 Discussion
While it might be tempting to find a solution to a challenge, we should first
determine if the challenge is possible to solve or if the challenge is inherent.
Figure 2.4 contains the key challenges identified in our study related to GUI-
based test automation, arranged from essential to accidental difficulties. Chal-
lenges are considered as essential if they are inherent to a specific technology

2.4 Discussion 53

or approach and as accidental when it is possible to eliminate the challenge
through technology or improved ways of working [43]. However, as discussed in
the synthesis of the results, the view of the challenge as accidental or essential
also relates to from what perspective we view the challenge. Therefore, some
challenges are arranged in Figure 2.4 in between essential and accidental, for
example, tool challenges.

Figure 2.4: The key challenges related to GUI-based test automation arranged
from essential to accidental difficulties.

In the figure, we also attempt to cluster the challenges into three different
groups related to (1) test execution fragility, (2) tools and automation skills,
and (3) MBT challenges. This grouping is based on the semantic similarities
between the challenges of each group, as presented in the literature, e.g., in
what papers the challenges are presented. In the following sections, we discuss
these groups in more detail.

Test execution fragility: Three of the challenges have been grouped to-
gether as they are related to the fragility of test execution. As discussed, they
may be all caused by the challenge to reliably identify widgets when running
automated tests, i.e. (C3). There have been, at least, nine academic papers

54 Why many challenges with GUI Test Automation (will) remain

that attempt to solve or mitigate the challenge with robust widget identifica-
tion in the past two decades [166] [99] [21] [102] [60] [49] [150] [100] [172], and
publications still report the same challenge. Despite these efforts, the chal-
lenges remain, possibly because the academic solutions have been insufficient
in solving the challenges faced by the industry. Another possible explanation
is that academia has found possible solutions but not communicated these in
a suitable way to industry. In the latter case, academia might have failed in
transferring the knowledge to the industry, or the industry has not yet been
able to incorporate the solution into their products or processes.

Tools and automation skills: Three of the challenges form a group related
to test automation tools or skills required for efficient/effective test automation
or programming (C5, C11, and C18). The challenge that testers need automa-
tion and programming skills to succeed with GUI-based testing (C18) is the
only challenge, in this group, that we defined as mainly accidental and, there-
fore, the challenge that should be devoted to the most research efforts in the
future. The current solution to the challenge is training the team members or by
hiring someone with the required skills. However, people with in-depth knowl-
edge of test automation and programming are difficult to find, and training is
both time-consuming and costly. Therefore, the industry would benefit from a
GUI-based test automation approach that does not require the same amount of
skills as needed today.

CR tools was a good attempt for such an approach since it allowed anyone
with domain knowledge to record valid test scripts. However, the challenge with
CR tools is that the recorded scripts are fragile and need programming skills
to be enhanced or merged into reliable test suites. Also, CR tools can only
record new test scripts and require programming or scripting knowledge when
maintaining existing test scripts at a high cost. This first challenge, related to
the script fragility, can be partly mitigated with a more robust identification of
GUI widgets (C3). The remaining challenges could be addressed by a possible
future solution for reducing the need for automation and programming skills. It
could enhance CR tools with functionality, methods, or processes that can aid
the manual tester when merging and maintaining the recorded tests.

Aho et al. divide GUI-based test automation into three levels: Script-based,
Model-based, and Scriptless [20]. According to Aho et al., the benefits of script-
less testing are that the initial investment and maintenance effort is low com-
pared to the other approaches. Still, a challenge is effective action selection since
actions are typically selected randomly. Combining scriptless with the recording
functionality from CR tools would perhaps be an interesting approach to inves-
tigate in further research since recorded actions from real test scenarios could

2.4 Discussion 55

provide useful hints when selecting actions instead of picking actions randomly.
Hence, a more machine-learning based approach based on models of the system
to be tested, recorded from human users.

MBT challenges: The final group is about challenges with model-based
testing. Since the state-space explosion challenge (C20) is essential, research
should concentrate on possible solutions for creating and maintaining model-
based tests (C19). Many of the reported MBT challenges are caused by the
large number of possible ways to traverse a GUI application and to be able to
extract the paths that provide the best test coverage and the highest chance of
finding a defect. Instead of trying to extract high-quality test scenarios by ran-
domly traversing the application, the solution might instead be similar to the
one suggested by Mariani et al., that we need high-level guidance from typical
patterns of working with GUI applications [111]. Perhaps it is even possible to
create the patterns, or the models themselves, by recording or observing actual
end-users or testers of the SUT. Recording the models from the users would be
a feasible solution to handle both the state space challenge and the high cost of
creating the models. Theoretically, these models would include meta informa-
tion of what the primary states of the application under test are, assuming that
they are covered by the human that recorded them. This information would
provide guidance for heuristics of how to generate suitable test cases, which
could trump existing random approaches.

The challenge that models need maintenance when the SUT changes (C19)
are very similar to the challenge that application changes break the test execu-
tion (C1), which in turn depends a lot on robust identification of GUI widgets
(C3). Finding a solution to C3 might, consequently, have a positive impact on
C19.

Summary: Synthesis of the acquired results, and grouping of the identified
challenges, reveal some challenges to be accidental (solvable) and some essential
(only possible to mitigate or solvable in specific contexts). Additionally, many
challenges share the common issue of a lack of robust identification of GUI
widgets, implying that this is a central and critical challenge to solve.

Furthermore, the grouping of essential and accidental challenges helps us
explain why certain challenges are chronologically reoccurring, and cannot be
solved, in research on different test techniques and platforms. This conclusion
provides interesting insights for both industry and academia. It should influence
our mindset regarding what challenges we target and how we reason about the
proposed solution- or mitigation strategies in the future.

56 Why many challenges with GUI Test Automation (will) remain

2.5 Threats to Validity
This section covers some of the threats to the validity of this literature review.

Construct validity: The selection of databases and construction of the
query string for the literature search has a significant impact on the publications
included in this study and is a threat to be considered. We divided the query
string into several parts and tested each part separately to avoid missing any
relevant publications that contained benefits or challenges about GUI-based
test automation. A search tool was created to perform full-text searches inside
the downloaded publications to make sure that they contained all the keyword
combinations. This was complemented by manual review to ensure the inclusion
of semantically suitable papers. However, four publications were included during
the snowballing procedure after checking the inclusion/exclusion criteria and
suggests that our search query string was not perfect. However, we decided that
it was good enough to continue with the study since we argue that a few missed
publications will likely not have a significant impact on the results. We argue
that in the worst case, we may have missed some challenge of importance, but
given the authors’ extensive empirical understanding of the area, we perceive it
as unlikely. However, it cannot be ruled out since the challenges were identified
and formulated by the leading researcher based on the statements extracted from
the included publications and is therefore affected by the leading researcher’s
knowledge and perception. However, the acquired challenges were reviewed by
the other authors, and no explicit challenges have been observed as left out.

Internal validity: The extensive industrial experience held by the authors
of this study is a threat to internal validity. Bias from industrial experience can
undoubtedly affect the synthesis and coding of challenges, even though we were
aware of this challenge and actively tried to make unbiased judgments. There
is also a risk that the challenges extracted from the literature are biased or that
our interpretation of them are affected by our own experience from the field and
that it might have an impact on the synthesis.

External validity: We decided to exclude publications that did not con-
tain any empirical evidence to try to reduce the positive-results bias, a type of
publication bias that occurs when the authors are more likely to submit positive
results than negative or inconclusive results [144].

Also, a well-defined methodology, like a systematic literature review in our
case, makes it less likely that the literature results are biased even though it
does not protect against publication bias in the primary studies, according to
Kitchenham et al. [87]. To eliminate possible bias from our own analysis,
the results and conclusions were verified within the research group through

2.6 Conclusions 57

continuous discussion throughout the study process. Although not eliminating
analysis bias, this approach mitigates the personal bias of one or several of the
authors and thereby improves the validity of the results.

Reliability: Data analysis and coding of challenges are affected by the au-
thor’s experience and knowledge in the GUI-based test automation field. They
are a threat to the reliability and reproducibility of this literature review. Re-
peating this literature review would likely result in slightly different descriptions
of the challenges, but we consider these potential deviations small and not signif-
icantly affect our results. Even though our definitions of essential and accidental
challenges were based on the definition by Brooks et al., we decided to limit the
definition of accidental challenges as something that can be mitigated using a
technical solution to get a clear definition and match the scope of this SLR. Our
redefinition and interpretation of essential and accidental challenges impact the
classification of the reported challenges. However, we note that it does not affect
essential challenges as these, per definition, cannot be completely solved with
technical solutions, or otherwise.

2.6 Conclusions
Test automation through the GUI is still a challenge despite many emerging
tools and technologies during the last two decades. This SLR pinpoints 24
challenges of GUI-based test automation synthesized from 49 publications that
build on empirical evidence. Eight key challenges were mapped on a timeline
to determine how the challenges have evolved and if there have been attempts
to mitigate them.

A novel contribution of this work is that all identified key challenges have
been classified as essential or accidental in an attempt to provide guidance for
future research and to avoid time expenditure on solutions for inherent chal-
lenges that cannot be solved entirely. Instead, we urge a focus on the challenges
of a more accidental nature that we can solve by further research. Additionally,
we urge a change in mindset, with this new understanding in mind, to approach
proposed solutions or mitigation strategies in the future.

We might never find any solutions to four of the key challenges since they
are essential. The remaining four are accidental challenges that are possible
to mitigate and therefore deserving further attention. The challenge of robust
identification of GUI widgets (C3) could be the root cause of the synchronization
challenge (C2) and many of the other challenges reported. A solution, to C3,
could make the test execution less fragile and reduce the maintenance time and

58 Why many challenges with GUI Test Automation (will) remain

cost of both test scripts and models. Both the challenge that GUI-based test
automation requires automation or programming skills (C18) and the challenge
of creating/maintaining model-based tests (C19) could be targeted by a tool,
method, or process that provide scriptless creation and maintenance of the tests
instead of recording and maintaining the tests by coding or scripting like a
conventional CR tool. A scriptless approach could provide a more efficient and
effective way of creating and maintaining automated GUI tests without extensive
programming skills.

Future work should be conducted to find solutions that enhance script exe-
cution robustness (C2 and C3), reduces the skills required for successful GUI-
based test automation (C18), and improves the efficiency and effectiveness of
creating/maintaining model-based tests (C19).

2.7 Acknowledgements
We would like to acknowledge that this work was supported by the KKS foun-
dation through the S.E.R.T. Research Profile project at Blekinge Institute of
Technology.

Chapter 3

Augmented Testing:
Industry Feedback To
Shape a New Testing
Technology

Abstract
Manual testing is the most commonly used approach in the industry today
for acceptance- and system-testing of software applications. Test automation
has been suggested to address drawbacks with manual testing but both test
automation and manual testing have several challenges that limit their return of
investment for system- and acceptance-test automation. Hence, there is still an
industrial need for another approach to testing that can mitigate the challenges
associated with system- and acceptance-testing and make it more efficient and
cost effective for the industry.

In this paper we present a novel technique we refer to as Augmented Testing
(AT). AT is defined as testing through a visual layer between the tester and the
System Under Test (SUT) that superimposes information on top of the GUI.

We created a prototype for AT and performed an industrial workshop study
with 10 software developers to get their perceived benefits and drawbacks of
AT. The benefits and drawbacks will be useful for further development of the

60
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

technique and prototype for AT. The workshop study identified more benefits
than drawbacks with AT. Two of the identified benefits were: "Know what to
test and what has been tested” and ”Less manual work”.

Due to these results, we believe that AT is a promising technique that de-
serves more research since it may provide industry with new benefits that current
techniques lack.

Keywords: System Testing, Test Automation, Industrial Workshop Study,
Augmented Testing

3.1 Introduction
Manual testing is the most commonly used approach in the industry today for
acceptance- and system-testing of software applications. Tests are conducted by
the human by communicating through the Human Machine Interface (HMI) or
Graphical User Interface (GUI) of the System Under Test (SUT). Manual tests
are however time consuming, repetitive and error-prone to perform for a human
tester [71, 73]. Test automation, using techniques like unit testing [131] and
record-replay [17], has been suggested as a solution to the drawbacks found in
manual testing. These techniques also include tools that use image recognition
to emulate manual testing [23, 47].

However, all the proposed techniques, especially on the GUI level, have
several reported challenges and drawbacks that limit their return of investment
for system- and acceptance-test automation.

One common drawback reported, in an industrial case study performed, by
Thummalapenta at al. [150] is that the widget recognition failed because of the
high degree of dynamism in the application GUI. Another drawback reported by
Thummalapenta at al. is that the GUI is affected by changes in the server-side
data and gives the example: "there is no guarantee that the book will appear
in the second position during playback as well".

Hence, there is still a need for research on efficient and effective testing to
mitigate the challenges of both manual- and automated-GUI testing.

In this paper we present a novel technique we refer to as Augmented Testing
(AT). AT can be explained as a technique that realizes the concept of human-
machine symbiosis [68] for software testing through the GUI. AT is defined as
testing through a visual layer between the tester and the SUT that superimposes
information on top of the GUI. The superimposed information can be anything
from actions to perform, results to check, identified issues, comments, statistics
etc. An example of how the augmented information can look like is illustrated

3.2 Background 61

in figure 3.4. The visual layer, hereby called the Augmentation Layer (AL),
relays all information, visual and non-visual, back and forth between the tester
and the SUT.

We believe that AT can have a positive impact on the efficiency of testing
applications through the user interface since the AL enables a faster and more
intuitive communication interface between the human and the machine.

One of the drawbacks of this technique is additional overhead since the AL is
placed in between the tester and the SUT and drains system resources. Another
drawback is that the interaction with the AL might be slightly different than
when using the actual SUT GUI. This drawback might have a negative impact
on the usability of the SUT.

A common approach to computer science and software engineering research
is to first propose and refine new technology and then later evaluate its effects
in industry. Here we aim to involve industry throughout the development of
augmented testing and to iterate and refine it based on industry feedback. We
thus implemented a prototype and carried out an industrial workshop with 10
participants to collect their perceptions of the technique.

The specific contributions of this paper are:

• A presentation of a novel technique we refer to as Augmented Testing
(AT) and its realization in a prototype.

• The collection of perceived benefits and drawbacks of AT from an in-
dustrial workshop study that can be used for further development of the
technique and prototype.

This paper is structured as follows. In Section 3.2 the theory behind AT
and the basic features of the prototype will be described. Section 3.3 presents
work related to the AT technique. Section 3.4 describes the method of the
industrial workshop study were the participants evaluated our prototype for
AT. The results from that study can be found in Section 3.5. We will discuss
the results in section 3.6 and give our conclusions in section 3.7. Finally some
work to consider for the future is presented in section 3.8.

3.2 Background
The workflow of Augmented Testing (AT) is illustrated in figure 3.1. The
human-machine interactions can be divided into four steps:

62
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

1. The machine retrieves the GUI bitmap and widget information, if avail-
able, from the SUT.

2. The Augmented Layer (AL) is displayed for the human and consists of the
retrieved GUI bitmap augmented with actions, checks, defects, suggestions
etc. from the machine.

3. The human interacts with the AL through the augmented actions, checks,
defects, suggestions etc.

4. The machine receives the human interaction and updates the model. The
human interaction is also relayed to the SUT normally using mouse or
keyboard events but may also interact with widgets directly or indirectly
using an Application Programming Interface (API).

Figure 3.1: Workflow of Augmented Testing

A prototype for AT was created in Java. A screenshot of the prototype can
be found in figure 3.4. In this example we are testing the Wikipedia [14] website
and the screenshot is taken during an ongoing test session.

A typical test session with the prototype starts by entering or updating a
few settings like the name of the product, the product version, the name of the

3.2 Background 63

tester, the type of application (desktop or web), the type of browser for web
applications and the Home Locator. The Home Locator is a URL for a website
or the path to an executable file for a desktop application that is launched when
the session is initiated. A screenshot of the start session dialog can be found in
figure 3.2.

Figure 3.2: Screenshot of the start session dialog

Figure 3.3: A state model tree

All actions performed by the tester, like mouse clicks and keyboard input,
are recorded during the test session. Previously recorded actions are augmented
using a blue circle on the AL. Hovering over the augmented action will reveal
more information, like the type of action and coverage. The recommended action
is larger than the other actions. Suggestions from the machine are indicated
using purple circles. The suggestions include scenarios to try in order to improve
the test coverage or boundary values to enter. Results to check are indicated

64
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

Figure 3.4: Screenshot of the prototype for Augmented Testing

by a green rectangle in the prototype. Checks may use image recognition [126]
or compare properties retrieved from GUI widgets [99, 101]. Valid results are
indicated with a green rectangle and invalid checks are indicated with a yellow
rectangle since they are either still valid or invalid. Checks that have not yet
been evaluated are indicated with a gray rectangle. Hovering over a check will
reveal more detailed information. Issues are indicated with a red rectangle. The
issues that cannot be confirmed are indicated by a yellow rectangle since they
can either be fixed or still be an issue. Non-evaluated issues are indicated with
a gray rectangle.

The tester may either select a previously recorded action displayed in the AL
or perform a new action, like a mouse click, double-click, mouse scroll or enter a
value using the keyboard. Performing a previously recorded action might reveal
a new set of actions to select from while performing a new action will not display
any actions to select from since that path has not yet been recorded.

The application state is important in AT since a given sequence of actions
must give the same predictable output that can be checked by the tool. An ap-
plication state is the state of an application and all it’s dependencies like internal
memory, stored data and external applications at a given time. Figure 4.2 shows
an example of a state model tree. The home state is the state of the application
when the session was started. A bookmark is a known application state that can
be useful, similar to a bookmark in a web-browser. Bookmarks can be added at
any time during a test session. The tester may at any time select to go back to
the home state, or a bookmark, to begin a new path through the SUT. A check

3.3 Related Work 65

is a result that needs to be verified, by the human or the machine, like a value
or an image. Issues are things that should be corrected. Comments are notes
that makes the test scenario easier to understand. Checks, issues or comments
may be added, by the tester, at any time during a session.

All actions are recorded into the prototypes state model tree, which means
that new actions create new branches within the state model tree that upon
replay of the test case will become available to the tester. The state model
tree has many things in common with a weighted neural network and is used
to identify patterns on input data to enable the prototype to give suggestions
to the user. Actions with a stronger connection weight are more common paths
to take when transitioning from one state to another. Stronger connections are
visualized by a thicker arrow in the state model tree in figure 4.2.

The tester has the option to select the Auto button to go from manual
mode into auto mode. In auto mode, the prototype will automatically click on
the recommended action until done. The tool will automatically go back into
manual mode if it finds a check or issue that is different than recorded. A tester
may also select the Navigate button to navigate to a previously reported issue
or bookmark. The prototype will then highlight the next action to select until
the target application state is reached. During auto mode, the tool will auto
click on the highlighted actions. The tester can stop the test session at any time
by pressing the Stop button.

3.3 Related Work
Mariani et al. [109] presented a technique and a tool, called AutoBlackTest, for
automatically generating system test cases for interactive applications. The goal
is to generate test cases that exercise the functionalities of the application by
navigating its GUI. Aho at al. [19] introduces a process of using Murphy tools to
extract models of GUI applications and utilizing the extracted models to support
various GUI testing activities, and share their experiences of using that approach
in industrial development and testing environments. Pham et al. proposed
concepts for linking debugging information with a video/screen-recording of an
application. They claim that it is a useful concept for debugging the application
under test, that it helped in debugging failures and that it can save a lot of
time in the testing and debugging phase of a software development process.
Amalfitano et al. [33] presents a technique for detecting, using machine learning,
and unlocking something they call a Gate GUI. A Gate GUI is, according to
Amalfitano et al., a graphical user interface that prevents a random exploration

66
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

technique from advancing to relevant parts of the SUT. A typical example of a
Gate GUI is a login dialog where a valid user name and password have to be
entered before allowing access to other features of the application.

We use a combination of all of the techniques mentioned above in the pro-
totype for AT. The prototype records and models valid application scenarios,
by observing the end-user, like the tools used by Mariani et al. and Aho at
al. The SUT can be recorded very accurately since all interactions go through
the AL and never directly to the SUT. Information from the current state is
also merged visually with a screenshot from the SUT similar to the concept
described by Pham et al. to produce an image that contains the screenshot
augmented with information from the current state, like actions, checks, issues,
comments etc. Gate GUIs, investigated by Amalfitano et al., can be handled
by the prototype without any manual coding or modeling since we know the
application state, and all application views, of the SUT and have recorded valid
application scenarios that are required to transition between them.

3.4 Industrial Workshop Study
This study was performed at a Swedish bank and finance company, hence forth
referred to as "the bank". This study was conducted at one of the banks mobile
app development locations, the research site, where 15 developers work.

3.4.1 Company Description
The bank is one of the largest based in Sweden, with almost 8 million customers
in 2018, mainly from the northern part of Europe. The bank has more than
14 000 employees and has collaboration with about 60 local banks. The IT
organization is a cross-border company with 1500 IT employees spread across
all home markets, located in several Swedish cities but also several other cities
in northern Europe. The IT organization is responsible for IT management
in ensuring the long-term focus of IT and adaptation to the bank’s business
strategies. The IT organization deliver a range of IT services to the bank,
including development and maintenance.

We performed a workshop study with 10 software developers from a team
located at the research site. The software developers creates mobile applications,
both iOS and Android, used by the customers of the bank. The developers
collaborate with other teams in Sweden that provide them with requirements,
UX-design and back-end functionality etc.

3.4 Industrial Workshop Study 67

3.4.2 Selecting an Application to Test
For the workshop we wanted to select an application to test that the devel-
opers found relevant and familiar. The most relevant choice would have been
to test the mobile applications that they are developing. We could however
not use a mobile application since the prototype only supports desktop- and
web-applications, but not mobile-applications. Instead, we decided that the de-
velopers should create test cases on their own banks public website since that
would be familiar to them. However, we did not want to affect the partici-
pants choice of test cases too much, so we decided to give the introduction and
demonstration on another website, namely a competitor bank’s website. We
selected this website since it uses a familiar vocabulary and contained similar
functionality, but did not use the same structure as their own banks public
website.

3.4.3 Workshop Study
The study consisted of two workshops, guided by the research questions:

• RQ1: What are the perceived benefits in industry of AT as demonstrated
by the prototype?

• RQ2: What are the perceived drawbacks in industry of AT as demon-
strated by the prototype?

• RQ3: What additional benefits can industrial practitioners perceive with
AT as a technique?

Both workshops were performed in the same way and lasted for two hours.
Each workshop was divided into four parts:

1. Introduction and demonstration of a prototype tool for AT during 30
minutes. We used the public website of a competitor bank as an exam-
ple application to test during the introduction and demonstration. The
demonstration covered how to start a new test session, how to create ac-
tions by using the mouse and keyboard and how to stop the session. The
participants also got instructions of how to add checks, issues and how
to return back to the home state. We also demonstrated the auto test
feature and how to navigate to a previously reported issue.

68
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

2. The participants got time to evaluate the tool freely for 30 minutes, but
this time using their own banks public website as an example application
to test. Only one of the developers could use the prototype at a time but
they were allowed to talk, collaborate and switch users at any time during
the, 30 minute, evaluation period. They were instructed to remember any
observed benefits or drawbacks they saw during the evaluation period but
not to disclose or discuss them with the other participants.

3. Each participant was instructed to write down all the observed benefits
and drawbacks of the prototype tool or technique for AT. They were in-
structed not to discuss the benefits and drawbacks with the other par-
ticipants and were also instructed not to write down any minor defects
directly related to shortcomings of the prototype since the main objective
is to get feedback on the technique of AT rather than minor problems with
the prototype. This part was limited to 30 minutes.

4. The participants were finally instructed to try to imagine a state-of-the-
art tool, based on the same technique as the prototype, created by a well
known software developer. They were also instructed to stick to technology
that existed today in order to avoid speculations about future technologies
such as general artificial intelligence. The purpose was to find yet unknown
or possible benefits of the technique for AT that might be implemented in
future interactions of the prototype. Each participant was then instructed
to write down any additional benefits that a user could get when using
such a tool. They were also instructed to clearly separate the additional
benefits from the benefits they noted in part 3. This part was limited to
30 minutes.

The first workshop had 4 participants and the second workshop was attended
by 6 participants. It would have been better to have the same number of
participants in both workshops since that would have given the participants
the same amount of time per person of evaluating the prototype. However, we
overlooked this potential threat since we deemed it more important to let the
developers select the workshop that best suited their work schedule to get as
many participants as possible.

We decided to begin the workshop with an introduction of AT and the
prototype even though we also introduced bias about the presented features of
the technique and prototype. To minimize the introduced bias, we demonstrated
the prototype and the theoretical concepts that we believed was required to be
able to create a few test cases without emphasizing one feature or concept over

3.5 Results 69

another. An alternative workshop design would have been to let the developers
figure out how to use the prototype without instructions but that option was
discarded since AT is a new concept that would have taken a long time to
understand without some kind of introduction.

3.5 Results

The coded and mapped perceived benefits (RQ1) from the two workshops are
illustrated in figure 3.5 and figure 3.6. Benefits from a hypothetical state-of-the-
art implementation of AT (RQ3) is marked with an asterisk (*). The numbers
in the rightmost box are references to the stated benefits or drawbacks from
the 10 participants, which can be found in Tables 3.1 and 3.2. The coded and
mapped drawbacks (RQ2) from the two workshops are illustrated in figure 3.7.

Tables 3.1 and 3.2 contains all the collected comments about perceived bene-
fits and drawbacks of AT from all of the 10 participants. Comments given in the
Swedish language were interpreted into English. Additionally, as can be seen in
the third column of Table 1, the comments have all been mapped to codes that
aim to group the comments together into higher-level concepts. Benefits from a
hypothetical state-of-the-art implementation of AT is marked with an asterisk
(*).

3.5.1 Threats to Validity

A threat to the external validity of the study’s results is that all participants
in the study were mobile app developers. We would likely have got a different
result if the participants belonged to a different role, like testers or requirement
engineers, or a combination of all. Another threat to the external validity is
that we only performed one study at one location with one company. Additional
results from several companies, and especially from different types of companies
that does not belong to the bank sector, would have provided us with a more
valid result.

Since our prototype for AT did not support mobile applications we also have
a treat to the construct validity. All the participants were mobile app developers
and would probably have responded differently when testing a mobile app as an
example instead of a website.

70
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

Figure 3.5: Code mapping of perceived benefits

3.5 Results 71

Figure 3.6: Code mapping of perceived benefits

72
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

Figure 3.7: Code mapping of perceived drawbacks

3.5 Results 73

Table 3.1: Identified perceived benefits and drawbacks

Part: Benefit or drawback: Mapped to code:
1 "Consistent tests" and "Reproducible" Reproducible tests/bugs
1 "Easy to spot things that changed" Easy to spot changes
1 "Pretty reports (dashboard, coverage mm)" Useful reports
1 "Jira support"* Sync with Jira*
1 "Collaboration between testers and developers" Improved team collaboration
1 "Bigger checks (larger than 400x200 pixels), a bug?" Tool problems
1 "Scope of test unclear, unclear what we are testing,

only do relevant tests."
Unclear test scope

2 "Better feedback on how to reproduce a bug." Reproducible tests/bugs
2 "Less manual work." Less manual work
2 "Lower problems with maintenance."* Less test maintenance
2 "Be able to analyze user behavior."* Analyze user behavior*
2 "A lot of maintenance of tests when the GUI changes." Maintenance when GUI

changes
2 "Should not test the application through the GUI

since our tests change too often."
Maintenance when GUI
changes

3 "Better overview of test scenarios."* Better overview of test scenar-
ios*

3 "Automated tests for manual testers (low technical)." Automation for manual testers
3 "Scroll does not work.", "User feedback after a click."

and "Easy to click in the wrong place."
Tool problems

3 "Hard to know when to use auto or semi auto." Non-intuitive tool
3 "Trace-ability of test and feedback." and "Need a bet-

ter overview of test flows and checks."
Unclear test scope

4 "Testers can create repeatable test cases." Reproducible tests/bugs
4 "Convenient reporting and overview of available

tests."*
Better overview of test scenar-
ios*

4 "Auto detect what parts to retest in a new version."* Auto detect what to retest*
4 "Testers can share reproducible defects with develop-

ers and others."
Improved team collaboration

4 "Recorded flows can easily become fragile (break in
new versions)."

Maintenance when GUI
changes

4 "The coverage term is confusing (perhaps use touched
instead)."

Tool problems

4 "Hard to create tests with good performance (exe-
cutes slowly)."

Performance issues

5 "With AI be able to generate specific and grouped
change reports."*

Useful reports

5 "Be able to analyze the state of UI widgets from a
component library to detect bugs in the layout."*

Compare with UI standard*

5 "With AI be able to learn to differentiate between
dynamic data and other changes."

Learn dynamic data

5 "Good and effective for static web-sites and applica-
tions."

Effective for static web sites

5 "A lot of work with maintaining tests in a "living"
program/app."

Maintenance when GUI
changes

5 "Sensitive to changes in test data, that changes often
in test environments."

Sensitive to test data

5 "Window in window, better with mouse control +
screen-recording?"

Tool problems

5 "Difficult to see a good solution/implementation for
app (spec iOS)."

Tool problems

5 "Heavy on performance." Performance issues
6 "Nice to have the test cases in the same tool as they

are executed by."
Reproducible tests/bugs

6 "Feels like a good way to make sure that we cover
everything that needs to be tested."

Easy to cover what needs to be
tested

6 "Fast to learn existing tests for new testers." New testers can learn how to
test

6 "Connection with tools like Jira."* Sync with Jira*

74
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

Table 3.2: Identified perceived benefits and drawbacks

Part: Benefit or drawback: Mapped to code:
6 "Detect common UI-errors, like misaligned widgets or

too small text size."*
Detect minor GUI-errors*

6 "Connection with Invision for retrieving wire-
frames."*

Detect minor GUI-errors*

6 "Possible to detect spelling errors or incorrect sen
tenses."*

Detect spelling errors*

6 "Detect color schemes unsuitable for color blind peo-
ple."*

Check if GUI suitable for color
blindness*

6 "Detect too long scenarios (too many clicks - bad
UX)."*

Detect UX problems*

6 "Needs to have better performance than the proto-
type."

Performance issues

6 "Unable to handle animations." Unable to handle animations
7 "Show widget sizes to compare with desired measure-

ments."*
Compare with UI standard*

7 "Get suggestions on widgets to test and list options
to select from."*

Suggestions of what to test*

7 "Actions should be squares instead of rings." Tool problems
7 "Action rings could block other elements." Tool problems
8 "Can test everything in a flow." Reproducible tests/bugs
8 "Good documentation of how to navigate regardless

of resolution etc."
Easy to cover what needs to be
tested

8 "Be able to show changes on all widgets regardless if
you have selected to test them."*

Be able to see all changes*

8 "Be able to recognize flows and "repair" even if there
are big changes in the scenario."*

Auto repair tests*

8 "Be able to run parallel flows to save time."* Reduce time using parallel ex-
ecution*

8 "Be able to ’learn’ new flows automatically on other
units."*

Learn from other machines*

8 "No feedback after performing an action." Tool problems
8 "No way of automatically executing the test again

without updating the product version."
Tool problems

8 "Cannot select parameters for test." Tool problems
8 "No documentation (like an info dialog) that describes

the changes between new product versions."
Non-intuitive tool

9 "To catch bugs in regression testing." Reproducible tests/bugs
9 ""Detects changes in navigation behaviour." Spot navigation changes
9 "Can perform visual repetitive tasks/checks." Automatic execution of test

cases
9 "Can detect visual changes better than a human." Detect minor GUI-errors*
9 "Large changes in a higher application state might

result in a removed sub-tree."
Tool problems

9 "Cannot check animations." Unable to handle animations
10 "Reduces the risk of missing something for repetitive

tests."
Easy to cover what needs to be
tested

10 "Requires less maintenance for smaller changes in the
GUI that traditional testing."

Less test maintenance

10 "Detects flows after larger GUI changes."* Less test maintenance
10 "Detect grammatical errors."* Detect grammatical errors*
10 "Test translations."* Test translations*
10 "Test for color-blindness."* Check if GUI suitable for color

blindness*
10 "Can give general feedback about the UX or UI, like

a non-intuitive GUI."*
Detect UX problems*

10 "Sanity checks based an a library of valid GUI wid-
gets."*

Compare with UI standard*

10 "Gives suggestion of what to check, like an invalid
image."*

Suggestions of what to test*

10 "Plugins makes it possible to tailor the solution." Extendable solution
10 "A good complement to other types of tests." Complement to other types of

tests

3.6 Discussion 75

3.6 Discussion
Rafi et al. [138] performed a literature review, that identified the benefits and
limitations of automated software testing, for example: ”Difficulty in mainte-
nance of test automation”, ”Automation can not replace manual testing” and
”False expectations” and included results from both experience reports and em-
pirical evidence.

We compared our results from the workshop study with the results from the
literature study by Rafi et al. and identified a few benefits and drawbacks that
we could find in both studies, like "B4. Save time by executing test automati-
cally", "B2. Less manual work" and "D1. Maintenance problems" in our study
maps well to "B3. Reduced testing time", "B7. Less human effort" and "L3.
Difficulty in maintenance of test automation" from the study by Rafi et al. This
suggests that AT has benefits and drawbacks in common with test automation.

More interesting is that we find a number of benefits in the study about AT
that are not presented in the study by Rafi et al. These benefits were: "B1.
Know what to test and what has been tested", "B3. Assisting new testers",
"B5. Improved collaboration" and "B6. Auto detection of defects". This result
implies that AT can provide new benefits to the field of software testing. Alter-
natively, the discrepancies between our result and the results found by Rafi et
al. can be explained by the closer human-machine interaction that AT enables.
This close interaction allows the user to apply cognitive functions on top of the
automated scenarios, which effectively augments them to potentially make them
more efficient and effective than manual or automated testing by themselves.

The identified perceived drawbacks (D1 and D2) of AT relate to both the
tool prototype and the technique. Since the prototype is in a very early stage
of development, far from being a full featured product, drawbacks like the ones
reported in "D2. Tool related problems" are expected but should be possible to
resolve in future iterations of the prototype. The drawbacks reported regarding
maintenance problems (D1) are known problems in the test automation com-
munity and was also identified as a limitation (L3) in the study by Rafi et al.
Tools based on the AT technique will likely also suffer, to some extent, from
this problem since they rely on the same under-laying technologies as current
tools for test automation, for example widget identification, image recognition,
etc. However, to what extent is still a subject of future research.

Another interesting observation is that we identified more perceived benefits
than drawbacks with AT in the workshop. Additionally, the perceived draw-
backs were mostly related to the limitations of the prototype or were common
drawbacks found in test automation. Due to these results, we believe that AT

76
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

is a promising technique that deserves more research since it may provide in-
dustry with new benefits that current techniques lack. Especially since this line
of research may uncover solutions to problems common to automated testing.

We also found that the two main perceived benefits (B1 and B2) observed
during the workshop were associated more with the AT prototype tool than the
technique itself. One possible reason for this might be that the participants did
not get enough information during the workshop to evaluate the technique as
a technique. Hence, their perceptions of the technique are biased by the AT
prototype tool’s performance, features and how it was demonstrated. Whilst
this conclusion highlights a threat to the validity of this work, the study also did
identify AT specific benefits and one drawback which then rules out that the
participants were completely unable to grasp the concept of AT as a technique.

One of the strongest perceived benefits "B6. Auto detection of defects", like
"Detect spelling errors" or "Detect UX problems", is not implemented in the
prototype for AT. This suggest that we failed to anticipate an important use
case of the AT technique when creating the prototype. The ability to find defects
or issues automatically has been discussed many times before using model based
testing techniques [109] [19] and should be considered in more detail in future
iterations of the prototype. The workshop study also identified another possible
benefit of a future tool: "B5. Improved collaboration". The prototype does not
contain team collaboration features today since it is not a key feature in the
concept of AT even though the concept could be extended to encompass it. Team
collaboration features, like crowd-sourcing of input actions and input data, is
interesting since it opens up new possibilities for generation of suggestions to
the user. However, since this feature also adds complexity to the tool, future
research is required to evaluate its efficiency and effectiveness.

3.7 Conclusions

We presented a novel technique we refer to as Augmented Testing (AT) and
performed an industrial workshop study with 10 software developers to get their
perceptions about benefits and drawbacks with the technique.

When we compared the perceived benefits and drawbacks collected from
the participants during the workshop study with the results from a literature
study by Rafi et al. several common benefits and drawbacks were identified.
The results indicate that AT has benefits and drawbacks in common with test
automation. However, we also found a number of perceived benefits that were

3.8 Future Work 77

not present in the literature study by Rafi et al., implying that AT can provide
new benefits to the field of software testing.

Some of the perceived benefits reported in the workshop study were: "B1.
Know what to test and what has been tested", "B2. Less manual work" and
"B6. Auto detection of defects". The perceived drawbacks reported were: "D1.
Maintenance problems" and "D2. Tool related problems". The identified bene-
fits and drawbacks will be useful for further development of the technique and
prototype for AT.

Since more perceived benefits than drawbacks were identified by the work-
shop, and the perceived drawbacks were mostly related to the limitations of the
prototype or common problems found in test automation, we believe that the
technique for AT is promising and deserves more research.

3.8 Future Work
Due to the observed common benefits and drawbacks between automated testing
and AT we believe that a more in-depth analysis of such benefits and drawbacks
would be beneficial for further research into the technique. In particular, the
benefits and drawbacks associated with GUI-based testing, which is currently
lacking in academic literature, would give insights into features that AT could
focus on to maximize its complementary value to automated testing in practice.

Since we have only identified perceived benefits and drawbacks, future work
is also required to identify the actual benefits and drawbacks of AT when used
in industrial practice. This work implies analysis of AT in actual use, first in
a controlled academic setting but later also in an industrial setting to evaluate
its efficiency and effectiveness.

In summary, AT is a novel technique for software testing with perceived
benefits that complement current automated testing techniques. These bene-
fits could help solve industrial challenges associated with software testing and
therefore warrant future research and development of the technique.

3.9 Acknowledgements
This work was supported by the KKS foundation through the S.E.R.T. Research
Profile project at Blekinge Institute of Technology and by a research grant
for the ORION project (ref. 20140218) from The Knowledge Foundation in
Sweden.

78
Augmented Testing: Industry Feedback To Shape a New Testing

Technology

Chapter 4

On the Industrial
Applicability of Augmented
Testing: An Empirical
Study

Abstract

Testing applications with graphical user Interfaces (GUI) is an important but
also a time-consuming task in practice. Tools and frameworks for GUI test
automation can make the test execution more efficient and lower the manual
labor required for regression testing. However, the test scripts used for auto-
mated GUI-based testing still require a substantial development effort and are
often reported as sensitive to change, leading to frequent and costly mainte-
nance. The efficiency of development, maintenance, and evolution of such tests
are thereby dependent on the readability of scripts and the ease-of-use of test
tools/frameworks in which the test scripts are defined.

To address these shortcomings in existing state-of-practice techniques, a
novel technique referred to as Augmented Testing (AT) has been proposed. AT
is defined as testing the System Under Test (SUT) through an Augmented GUI
that superimposes information on top of the SUT GUI. The Augmented GUI

80
On the Industrial Applicability of Augmented Testing: An

Empirical Study

can provide the user with hints, test data, or other support while also observing
and recording the tester’s interactions.

For this study, a prototype tool, called Scout, has been used that adheres
to the AT concept that is evaluated in an industrial empirical study. In the
evaluation, quasi-experiments and questionnaire surveys are performed in two
workshops, with 12 practitioners from two Swedish companies (Ericsson and
Inceptive). Results show that Scout can be used to create equivalent test cases
faster, with statistical significance, than creating automated scripts in two popu-
lar state-of-practice tools. The study concludes that AT has cost-value benefits,
applies to industrial-grade software, and overcomes several deficiencies of state-
of-practice GUI testing technologies in terms of ease-of-use.

Keywords: System Testing, Test Automation, Industrial Case Study, Aug-
mented Testing

4.1 Introduction

Manual software testing of an application is labor-intensive, requiring both tech-
nical and domain knowledge to be effective, and is therefore costly [71, 73]. Test
automation has been proposed as a complement to reducing the error-prone,
repetitive, and labor-intensive work performed using manual testing. Automa-
tion can lead to shorter lead time since automated tests are often executed faster
than manual test cases, which is particularly important in agile projects. Auto-
mated testing has been proposed for all levels of system abstraction, but testing
of an application through its user interface has been reported to have many lim-
itations that reduce its applicability in industrial practice [90, 138, 150]. One of
the most commonly reported limitations is test script fragility that in turn leads
to a high cost of creating and maintaining automated test cases. These costs
then become dependent on the time required to understand, write, or rewrite
the tests.

To address these challenges, a novel technique that we call Augmented Test-
ing (AT) [119], has been proposed as a possible solution that enhances and
increases the communication speed between the human tester and the machine.
The intention is to make it easier for the tester to create effective tests and more
easily co-evolve them with the SUT and its requirements.

Previous work on AT has, however, not explored the technique’s applicability
in industrial practice, only it’s perceived applicability [119]. To evaluate the ac-
tual applicability, this paper presents an industrial empirical study where Scout,

4.1 Introduction 81

a prototype tool for AT, is compared against two commonly used frameworks,
in the industry, for GUI test automation.

Following the technology transfer model defined by Gorschek et al. [69],
this study aims to evaluate if AT has reached a stage of research to make it
industrially applicable.

The specific contributions of this paper are, therefore:

• An overview of a novel technique for GUI test automation, called Aug-
mented Testing (AT).

• Results from an empirical evaluation of AT with industrial practitioners
of the efficiency of Scout, a prototype for AT, compared to two state-of-
practice approaches for GUI test automation.

4.1.1 Augmented Testing
Augmented Testing (AT) is a novel technique that aims to improve communi-
cation between the human tester and the machine to improve the efficiency and
effectiveness of GUI testing. AT is defined as testing the System Under Test
(SUT) through an Augmented GUI, which contains superimposed information
on top of the SUT GUI. The Augmented GUI may be used to highlight im-
portant areas as well as give hints to the tester (hereby called Superimposing),
but can also observe the testers’ interactions with the SUT GUI and use this to
learn how to perform actions and verify conditions (hereby called Observing).
Superimposing and Observing are thereby core concepts of AT and mandatory
features of any AT tool or framework. AT can be utilized in many potential
areas, including giving the tester guidance through suggestions of what to verify,
how to test (e.g. new test data) or what to test (e.g. new test paths to explore).
This guidance aims to reduce cognitive load by removing, for instance, context
switching between the computer monitor and manual test case descriptions,
recording automated test scenarios or providing inputs for exploratory testing.

4.1.2 Scout
Scout is a prototype tool that follows the definition of AT and that has been
developed for evaluating the technique in collaboration with industrial practi-
tioners. Figure 4.1 gives an overview of the core components in Scout.

The Augmented GUI is the only user interface presented to the tester, whilst
the actual GUI of the SUT is made unavailable. This implies that all actions
performed by the tester are received from the Augmented GUI and is relayed

82
On the Industrial Applicability of Augmented Testing: An

Empirical Study

Figure 4.1: Scout Overview

Figure 4.2: State Model

4.1 Introduction 83

Figure 4.3: Screenshot of the Scout Prototype

down to the actual SUT GUI through an application Driver that translates the
actions received from the tester to the corresponding actions on the SUT.

An Augmented GUI thereby shows the SUT’s GUI but modified with ad-
ditional checks, suggestions, issues and other information that is rendered, on
top, of it. A sample screenshot of the Scout prototype, during a test session
with a web application, can be seen in Figure 4.3. In the figure, the web site
is augmented with previously recorded actions (blue squares) and automated
checks (green squares).

Unlike conventional test tools that use scripts to store test scenarios, Scout
stores actions, checks, suggestions and issues in a Model. The Model is im-
plemented as a weighted graph, where each node in the graph represents an
application state. An example of a small Model is visualized in Figure 4.2. We
define the application state to be the state of an application, including all its
dependencies like internal memory, stored data and external applications at a
given time. Nodes are connected by Actions that represent an event performed
by the tester, like a mouse press or keyboard input. Utilizing a Model to store

84
On the Industrial Applicability of Augmented Testing: An

Empirical Study

information is suitable for SUT state and user behavior information. However,
this is a Scout specific implementation, not necessarily shared by other, future,
AT tools that may store information in other ways, e.g. scripts.

Another component within Scout is the State Controller that keeps track of
the current application state. Keeping track of the application state is crucial
since the augmented information needs to be synchronized with the GUI of the
SUT.

The Scout prototype has similarities to previous record and replay (R&R),
also called capture and replay, tools but differ in several fundamental areas.
R&R tools have several benefits, like the ease-of-use of recording tests. How-
ever, they also have many drawbacks, such as a high cost of understanding and
thereby maintaining the generated test cases [108]. Another drawback is that
many recording tools record human interactions by hooking into the SUT and
capturing its responses, which may not be possible to replay, leading to failed
test cases. The R&R tools were also limited by their underlying technologies
that made the test cases brittle [118, 150]. This brittleness caused tests to re-
quire significant maintenance efforts that diminished their return on investment.

Scout addresses the recording challenge by recording actions directly when
they are performed by the tester before they are relayed to the SUT’s GUI. In
this way, Scout is able to replay the test case in exactly the same way it was
recorded. A more important difference between Scout and previous R&R tools
is that test cases can be maintained or extended in the same way as they were
initially recorded. Hence, by following existing paths, highlighted in the Aug-
mented GUI, and occasionally exploring new ones, the tester can easily create
new branches of existing test cases. Albeit sometimes these actions are per-
formed differently than in the real SUT’s GUI due to the implementation of
Scout, for instance, text may be written before assigning it to a text field. How-
ever, and in contrast to R&R tools that may require manual merging of several
recordings through programming, Scout requires no such technical knowledge.
The knowledge that was previously required to maintain the recorded test suite
by creating reusable, often parameterized, functions or methods [108].

4.2 Related Work

In this section, we’ll present an overview of related work in advanced GUI-based
testing with similarities to AT and the Scout prototype. The previous works
will then be discussed and related to our work at the end of the Section.

4.2 Related Work 85

Pham et al. [137] proposed a concept for linking debugging information with
a video- or screen-recording of an application. They stated that it is a useful
concept for debugging the SUT but also that it helped in debugging failures
and that it can save time in the testing and debugging phase of a software de-
velopment process. Vos et al. [154] presented a technique and a tool, called
TESTAR, to reduce the fragility of test scripts caused by constant changes in
the SUT GUI by automatically detecting and executing tests generated from
the widgets currently available. Aho at al. [19] introduced a process of using
Murphy tools to extract GUI application models and using the extracted models
to support different GUI testing activities but also share their experiences of us-
ing that approach in industrial development and testing environments. Mariani
et al. [109] presented a tool and a technique that they call AutoBlackTest, to
be able to automatically generate system test cases for interactive applications.
The goal of the tool and technique was to generate test cases that exercise the
functionalities of the SUT by navigating the SUT GUI. Amalfitano et al. [33]
presented a technique for detecting and unlocking something they call a Gate
GUI, using machine learning. A Gate GUI is, according to Amalfitano et al., a
GUI that prevents a random exploration technique from advancing to relevant
parts of the SUT. An example of a Gate GUI is a login dialog where a valid name
and password have to be entered before access is allowed to certain features of
the SUT.

Scout and AT are inspired by all of the techniques mentioned above. Scout
records and models valid application scenarios, by observing and learning from
the end-user, similar to the tools described by Aho at al. and Mariani et al.
The interactions with the SUT can also be recorded very accurately since all the
end-user interactions go through the Augmented GUI. Instead of just selecting
actions to perform randomly or using a heuristic, like the TESTAR tool pre-
sented by Vos et al., Scout has the benefit of both knowing all available actions
in a given state but also the actions it learned from observing the end-user. Fur-
thermore, similar to Pham et al. actions, checks, issues and other information
from the current application state is augmented/visualized on top of a screen-
shot from the SUT to ease failure identification and debugging. Gate GUIs,
investigated by Amalfitano et al., can also be handled in Scout without manual
scripting or modeling since these are captured in user scenarios and connected
to the application’s state. Thus, albeit not providing the same solutions, Scout
provides a combined solution similar to the related works and their benefits.

86
On the Industrial Applicability of Augmented Testing: An

Empirical Study

4.3 Methodology
The goal of this study is to evaluate the industrial applicability of the Super-
imposing and Observing concepts of AT by comparing Scout against state-of-
practice (SOP) approaches for testing an application through the GUI. This
research goal has been broken down into three research questions where AT is
represented by the research prototype tool Scout:

• RQ1: How does the efficiency of creating tests using AT compare to
scenario-based SOP approaches?

• RQ2: How do industrial practitioners perceive the issue finding ability
when using AT compared to SOP approaches?

• RQ3: How much experience in test automation and programming do
industrial practitioners perceive to be required to successfully create tests
using AT compared to scenario-based SOP approaches?

We aim to answer our first research question using quasi-experiments. Quasi-
experiments were chosen over controlled experiments since the research objec-
tive is to evaluate AT’s applicability in practice. This objective infers a need
to involve human subjects, within their domain, making it impossible to con-
trol for all confounding variables, e.g. the participants’ hardware (computer),
previous knowledge and allocated resources (e.g. number of subjects and time).
The experiments were however based on guidelines for Software Engineering ex-
periments [159] with dependent and independent variables and aim to test the
hypothesis:

• H01: The efficiency of creating tests, measured as time, is greater when
using AT compared to scenario-based SOP approaches.

4.3.1 Phase 1: Scout vs Protractor
Protractor [9] is an end-to-end test automation framework for Angular [2] appli-
cations. Protractor runs tests against an application running in a web browser,
interacting with it as a user would. The Protractor framework is commonly
used by the industry and therefore a good state-of-practice candidate to com-
pare against Scout.

This phase of the study was performed in collaboration with Ericsson, a
telecommunication company that is one of the largest manufacturers of mobile

4.3 Methodology 87

communication equipment in the world with more than 94 000 employees world-
wide. The company was chosen partly due to convenience sampling and because
its applications include rich web-GUIs that could benefit from AT. The study
was performed using a quasi-experiment on a system developed and maintained
by approximately 66 developers in 11 teams at the company. The purpose of
the quasi-experiment was to measure the efficiency, measured as time, of creat-
ing test cases for the system (dependent variable) using Scout and Protractor
(independent variable), and provide support for hypothesis H01 to answer RQ1.

The web interface of the system is currently tested using the Protractor
framework that uses Selenium WebDriver to perform low-level events, like but-
ton presses and sending keystrokes to the application. As such, Protractor is
comparable to Scout that uses this same means of interaction and enables us
to measure efficiency as a function of the tools’ different means of test case
development, i.e. recording through the Augmented GUI (Scout) and scripting
(Protractor).

Before the workshop, to make Scout applicable to the system, the tool re-
quired some customization since many of the web components in the system
were not identified correctly by Scout’s test drivers. As an example, Scout was
unable to detect some HTML headings (h1, h2, h3, etc.) as clickable since
they were not surrounded by an anchor element. The leading researcher spent
approximately 8 hours to identify and add support for the unrecognized web
components, which made Scout applicable to most components (estimated to
90 percent). To avoid issues during the workshop, only recognized components
were used.

In preparation for the workshop, a test case was defined in natural language
text that was relevant to the SUT and representative for tests in the existing
Protractor test suite. A constraint for the test was, however, to make it small
enough to be created during the limited time, allocated by the company, for the
workshop (i.e. 1.5 hours). The leading researcher, in collaboration with one of
the developers from the team, used the web interface of the system to specify a
test case of 16 steps that were similar, but not identical, to one of their existing
test cases.

The comparison of Scout to Protractor was performed in a workshop divided
into two sessions, 30 and 60 minutes respectively, with six developers from dif-
ferent teams. During the first session of the workshop, the participants were
provided with print-outs of the step-by-step instructions for the test case and
were given the task to develop a corresponding test case using Protractor and
take note of the time to create a working (i.e. running) test. They were not al-
lowed to take any breaks or consult anyone while creating the test case, however,

88
On the Industrial Applicability of Augmented Testing: An

Empirical Study

using online documentation or forums was allowed. This task was time-boxed
to 20 minutes in the first 30-minute session due to the limited time of the work-
shop. Participants that failed to complete the task during the allocated time
(i.e. complete the entire test case) were instructed to estimate how much, in
percent, of the test case that was remaining and also how much time that it
would take to complete the remaining part. This made it possible to not only
get an estimate of the time to create the entire test case but also get a hint
of how reliable that estimation was. A participant that, for example, was 90
percent finished would likely be able to make a fairly accurate approximation
of the total time since only 10 percent of the work would need to be estimated.

At the beginning of the second session of the workshop, the participants
were instructed to download and install the Scout tool. After completing the
Scout installation process, the participants were given a short introduction to
the tool (10 minutes) and then instructed to create the same test case as in the
first session but this time using Scout. However, instead of a manual print-out
as in the first session, the test steps were rendered in Scout’s augmented GUI
as text-boxes beneath the mouse cursor, a feature supported by the tool for
superimposing information. The feature automatically traverses the imported,
manual, test sequence and displays one step of the sequence for each action the
user should make. Since Scout keeps track of the session time automatically, the
participants were instructed to simply write down the session time, displayed
by the tool, when finished recording the test.

Finally, at the end of the second session of the workshop, the participants
were asked to fill out a questionnaire survey, with 6 point Likert-scale [40] ques-
tions, that contained statements about Scout and Protractor that should be
answered with a number where 1 was "strongly disagree" and 6 was "strongly
agree". The questions used in the questionnaire are found in Tables 4.4 and 4.5.

4.3.2 Phase 2: Scout vs Selenium

Selenium WebDriver [11] is a well-known open-source tool for automating web
applications. The tool can be used directly using its application interface
(API), which is provided in many different programming languages, or indi-
rectly through some kind of frameworks like Scout or Protractor.

The quasi-experiment was performed as a workshop with Inceptive, a con-
sultant company that is focused on software testing and requirements. The
company has a total of 38 employees distributed on two locations in Sweden of
which six participated from their Gothenburg office.

4.4 Results 89

Six participants attended the workshop, all with some experience of software
development but almost no previous knowledge in test automation, Selenium
WebDriver or Scout.

The workshop began with a two-hour seminar about Selenium WebDriver
since we decided that the participants needed an introduction to be able to
create a test case. Additionally, after downloading and completing the Scout
installation process, the participants were given a ten-minute introduction to
the tool by the leading researcher.

The quasi-experiment aimed to compare the time to create a test case from a
textual step-by-step instruction (dependent variable) using the Selenium Web-
Driver API and Scout (independent variable) for the same website used in Phase
1. This quasi-experiment aimed to test hypothesis H01 and answer RQ1. The
participants were instructed to create a test using Scout from a manual instruc-
tion that was presented, one instruction at a time, in the Augmented GUI, i.e.
superimposed information. Next, the same test instructions, this time in the
form of natural language text, were used by the participants to create an auto-
mated test using Java and the Selenium WebDriver API. The participants were
also instructed to note the time needed to create each test case.

Finally, at the end of the workshop, the participants were asked to fill out
a questionnaire survey, with 6 point Likert-scale questions, which contained
statements about Scout and Selenium WebDriver that should be answered with
a number where 1 denoted "strongly disagree" and 6 denoted "strongly agree".
The questions can be found in Table 4.4 and 4.5.

4.4 Results
The results of the study were acquired by comparing Scout to two different
state-of-practice approaches to GUI testing in industrial practice. Protractor
was chosen out of convenience since it was the framework currently used by
Ericsson. Selenium, was explicitly chosen since it represent a commonly used
technique in industrial practice.

4.4.1 Phase 1: Scout vs Protractor
Table 4.1 presents the time, in minutes, for the participants to create one test
case using Scout and then by using Protractor. In the table, partly estimated
values are marked with an asterisk (*) while completely estimated values are
marked with two asterisks (**). The (***) denotes the result of the leading

90
On the Industrial Applicability of Augmented Testing: An

Empirical Study

researcher, added to the table as a base-line value compared to the practitioners.
The leading researcher did not perform the Protractor tests due to the lack of
experience with the tool.

Table 4.1: Create test using Scout and Protractor

Part. no: Scout (min): Protractor (min):
1 3.3 23*
2 3.7 90*
3 4.6 60*
4 3.5 31
5 3.9 60**
6 2.6 16
7*** 3 NA
Average: 3.5 46.7
StDev: 0.65 28.2

Table 4.2: Create test using Scout and Selenium

Part. no: Scout (min): Selenium (min):
1 2.43 24.25
2 1.98 8.15
3 2.38 14.78
4 1.85 39.92
5 2.53 13
6 1.43 NA
7*** 1.63 10.27
Average: 2.03 18.4
StDev: 0.43 11.9

Creating a test using Scout required, on average, about 7.5% of the time to
create a similar test case using Protractor (3.5/46.7 minutes). Formal statis-
tical analysis with the Wilcoxon signed-rank test also showed this result to be
statistically significant different (p=0.03125). Worth noting is the high stan-
dard deviation of the time required to create Protractor test cases, which can
be explained by the varying skill of the participants, which also influences their
estimates. However, even if the average time required to create tests in Scout
is compared to the best time for creating the test in Protractor, Scout still only
required 21% as much time (3.5/16 minutes). Additionally, we note that the
leading researcher’s time (3 minutes) was roughly equivalent to the participant’s
average (3.5 minutes).

4.4 Results 91

4.4.2 Phase 2: Scout vs Selenium
Results from the workshop, that required the participants to create tests using
the two tools, are presented in Table 4.2. Creating a test using Scout required, on
average, about 11% (2.03/18.4 minutes) of the time to create a similar test case
using Selenium. Formal statistical analysis with the Wilcoxon signed-rank test
also showed this result to be statistically significant different (p=0.03125). Ad-
ditionally, we note that the leading researcher’s time to create a Scout test (1.63
minutes) was comparable to the participants’ average (2.03 minutes). However,
the leading researcher’s time to create the test case in Selenium (10.27 minutes)
was almost twice as fast as the average of the participants (18.4). Thus, it is
possible that, on average, more skilled Selenium users would perform better.

One of the Selenium results were marked as NA since the participant failed
to create a test case due to problems with the development environment. The
(***) denotes the result of the leading researcher, added to provide a base-line
value compared to the practitioners.

4.4.3 Survey
A questionnaire survey was performed with a total of 12 participants, 6 from
each workshop in Phase 1 and 2, who created test cases using Scout and either
Protractor or Selenium WebDriver. Results from the survey are presented in
Table 4.4 and 4.5. The participants in Phase 2 also got to answer two additional
questions (denoted Question 8 for Scout and Selenium) concerning the ease of
understanding Scout and Selenium test cases. The survey contained statements
about Scout and Protractor or Selenium WebDriver that should be answered
according to a 6 point Likert-scale, where 1 denoted "strongly disagree" and 6
denoted "strongly agree".

The tables also contains calculated averages, hereby referred to as the Likert-
average (LA), of the responses from the 12 participants. The LA value gives us
a number to use for comparing the responses from the participants, even though
we are aware of the fact that numbers in a Likert-scales should not be used like
metrics.

When comparing question 3 in Table 4.4 with the corresponding question in
Table 4.5 we see that the LA value for Scout is much higher (5.66 vs 1.5) than
for Protractor/Selenium and that gives us an indication that the participants
perceive that Scout require less programming skills than Protractor/Selenium
(RQ3). Question 4 shows a similar result, even though less convincing (5.26 vs
3.25), but gives an indication that the participants perceive that Scout requires

92
On the Industrial Applicability of Augmented Testing: An

Empirical Study

less test automation skills than Protractor/Selenium (RQ3). Question 6 was
designed to answer RQ2 and shows that the participants perceive that Scout is
almost as good as Protractor/Selenium for locating issues (4.08 vs 4.8). How-
ever, this is only based on perception and further research is required to verify
the tool’s ability to do so in practice. Question 7 confirms the results, from
the quasi-experiments designed to answer RQ1, that the participants perceive
that it is less time consuming to create tests using Scout than using Protrac-
tor/Selenium (2 vs 5.17). Question 8 indicates that the participants perceive
that Scout tests are easier to understand and follow than Selenium tests (5 vs
3.33). Finally, question 1 and 2, are not connected to any research question
but, indicates that the participants perceive that Scout is both easier to use
and learn than Protractor/Selenium (5.08 vs 3.67 and 5.33 vs 4).

Table 4.3: Comparing all approaches of creating tests

Approaches: Time (min): Percent:
Scout vs Protractor 3.5 vs 46.7 7.5%
Scout vs Selenium 2.03 vs 18.4 11%

Table 4.4: Survey about Scout. LA - Likert Average, PX - Person X.

Question P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 LA
1. Scout is easy to use. 6 6 3 5 5 6 4 5 5 6 6 4 5.08
2. Scout is easy to
learn.

6 6 4 5 5 6 5 6 6 6 5 4 5.33

3. Scout requires lit-
tle or no programming
skills.

6 6 6 6 6 6 6 6 6 3 6 5 5.66

4. Scout requires little
or no test automation
skills.

5 6 6 4 5 5 6 5 6 5 6 4 5.25

5. Scout is fun to use. 5 5 5 4 3 6 3 6 4 5 3 3 4.33
6. Scout can spot the
same kind of issues as
other test automation
tools.

5 6 5 5 4 3 4 3 3 3 4 4 4.08

7. Creating automated
tests using Scout is
time consuming.

1 2 2 2 3 2 2 1 2 1 3 3 2

8. Scout tests are easy
to understand and fol-
low.

5 5 4 6 5 5 5

4.4 Results 93

Table 4.5: Survey about Protractor / Selenium. P1-P6 used Protractor whilst
P7-P12 used Selenium. LA - Likert Average, PX - Person X.

Question P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 LA
1. Selenium / Protrac-
tor is easy to use.

3 3 5 4 4 3 3 2 5 3 4 5 3.67

2. Selenium / Protrac-
tor is easy to learn.

2 4 5 3 4 3 4 3 5 6 4 5 4

3. Selenium / Protrac-
tor requires little or no
programming skills.

2 1 3 1 1 1 1 2 2 2 1 1 1.5

4. Selenium / Protrac-
tor requires little or no
test automation skills.

4 1 4 2 3 2 3 3 5 5 5 2 3.25

5. Selenium / Protrac-
tor is fun to use.

3 2 3 3 3 2 5 5 4 4 4 3 3.41

6. Selenium / Protrac-
tor can spot the same
kind of issues as other
test automation tools.

6 4 6 6 6 2 4 6 5 5 4 4 4.8

7. Creating automated
tests using Selenium /
Protractor is time con-
suming.

5 6 5 4 6 5 5 5 6 4 6 5 5.17

8. Selenium tests are
easy to understand and
follow.

5 3 3 3 3 3 3.33

4.4.4 Threats to Validity
In this section we will go through some threats to the validity of this paper.
We stress that the focus of the study was industrial applicability of GUI Aug-
mentation and that, like most industrial studies, resource constraints and other
confounding factors played a role in the study’s design and execution.

Construct validity: The studies were performed with industrial practi-
tioners on one large industry-grade system but also on a website with a lower
complexity than a real system. To be able to only use industry-grade systems
would have provided us with more valid results.

Internal validity: Due to limited time available for the workshops, we
decided not to break up the participants into two groups to enable a cross-
experimental design, in phase 1 and 2, even though we would get a learning
bias when the participants created the same test cases again but with a different
framework. Another threat to the internal validity is that we have not measured
the issue finding ability of the tests created using Scout. We have only asked
the participants, using a survey question, if they think that Scout can spot the

94
On the Industrial Applicability of Augmented Testing: An

Empirical Study

same kind of issues as other test automation tools. Extending each phase by also
measuring the issue finding ability would have increased the time to perform
the workshops and since the time, with the participants, was very limited we
decided to leave that to further research.

External validity: A threat to external validity is that we have only results
from testing web applications but not desktop- or mobile-applications, etc., that
might give completely different results due to the underlying technology. To also
be able to compare Scout with SOP frameworks on a wide variety of industrial
applications would improve external validity, something that we aim to do in
further research. Another threat is that we have only evaluated AT using one
tool, our prototype Scout, since we are not yet aware of any other tool that
meets the definition of AT.

Reliability: There was a high variance between the results for creating Pro-
tractor and Selenium WebDriver tests in phases 1 and 2 even though we could
not identify a correlation with the previous experience of the participants. A
possible explanation to that observation is that the results depend on a con-
founding variable, that we have failed to identify, and would be a treat to the
reliability since it affects the average results.

4.5 Analysis

4.5.1 RQ1: How does the efficiency of creating tests using
AT compare to scenario-based SOP approaches?

We performed two quasi-experiments to answer this question and had the hy-
pothesis that; the efficiency of creating tests, measured as time, is greater when
using AT compared to scenario-based SOP approaches (H01).

A summary of the results from the quasi-experiments, where we compared
Scout with other state-of-practice approaches, can be found in Table 4.3. When
comparing the Augmented GUI in Scout with two commonly used frameworks
for automated GUI testing, the participants were able to create a test case
using augmentation in 7.5% of the time, on average, compared to Protractor
and in 11% of the time, on average, when compared to Selenium. Both results
showing, with statistical significance, that tests could be created quicker in
Scout’s Augmented GUI.

These results show that AT, as it is currently implemented by Scout, is more
efficient for test case creation than the two state-of-practice approaches that we
investigated. However, this claim is delimited to the investigated approaches,

4.5 Analysis 95

the number of participants in the study and the high variance in the results that
prohibit us from confidently stating with what factor Scout is faster. We also
stress that the research question only focused on providing a result regarding
if AT is more efficient for test case creation, not more efficient overall. Overall
efficiency would require additional research, as presented in Section 4.8. This
result, regardless, shows initial cost-benefit and industrial value, which opens
up for additional research into AT to explore what additional benefits more
advanced superimposition and observation of information can achieve. Such
research should focus on the overall value of AT as a concept can achieve and also
compare Scout to other AT tools (when made available) and similar techniques
such and R&R.

4.5.2 RQ2: How do industrial practitioners perceive the
issue finding ability when using AT compared to
SOP approaches?

We performed a questionnaire survey with a total of 12 participants, 6 from
each workshop during phases 1 and 2, to be able to answer this question.

The responses from question 6 in the survey give us the answer that the par-
ticipants find Scout almost as good as Protractor/Selenium for locating issues,
with a Likert-average (LA) of 4.08 compared to 4.8 for Protractor/Selenium.
This is a logical conclusion since Scout currently utilizes the same driver frame-
work as the other tools, i.e. Selenium. However, since the participants did not
rank the tool as high, and have experience with Protractor and/or Selenium
but not with Scout, they might need more time with Scout to be able to trust
its ability to find issues. An alternative explanation is that the participants are
correct in their perception since a tool like Scout has flexibility limitations com-
pared to an API based approach. In the current prototype of Scout it was, for
example, not possible to automatically verify the number of rows presented in a
table, something that would be fairly easy to do using a programming language.

4.5.3 RQ3: How much experience in test automation and
programming do industrial practitioners perceive to
be required to successfully create tests using AT
compared to SOP approaches?

Questions 3 and 4 from the survey were designed to give us an answer to this
question. The LA value for question 3, regarding the requirement on program-

96
On the Industrial Applicability of Augmented Testing: An

Empirical Study

ming skills, is much higher for Scout than for Protractor/Selenium (5.66 vs
1.5). Additionally, for question 4, regarding test automation skills, participants
indicate that Scout requires fewer skills in test automation than Protractor/Se-
lenium (5.26 vs 3.25).

Skilled programmers or test automation experts are expensive and a tool or
technique, like Scout and AT, which require less technical skills could thereby
save a lot of money for the industry. Additionally, the lower skill requirements
imply that domain experts, which usually lack the technical skill (e.g. nurses in
the medical domain) can perform test automation.

These results are further supported by the fact that practitioners, of varying
knowledge and skill, were all able to finish the test creation tasks in Scout in
the allocated time-frames, whilst many did not finish them in the compared
state-of-practice approaches.

4.6 Discussion
The results and analysis from our first research question (RQ1) show that AT,
represented by the tool Scout, was more efficient, in creating tests, than the
two SOP approaches that we compared with. We have also indications that
the industrial participants think the need for programming or test automation
skills are lower for successfully creating tests using Scout compared to the SOP
approaches (RQ3). The participants also believe that Scout has almost the same
issue finding ability as the SOP approaches (RQ2).

We believe that one explanation of the observed gains in efficiency of creating
tests can be that the test steps are created by just clicking, inside the Augmented
GUI, instead of typing commands using some form of script or programming
language. As an example, a typical action like a click on a button or link is, in
most cases, added using one mouse click on the Augmented GUI while it would
typically require two or more lines of code to perform the same thing.

That testers, without programming skills, can quickly create effective tests
would be valuable for the industry since more tests result in better test coverage
that in turn helps improve the quality of the SUT. Also AT would help lower
overall cost, not only because of the shorter time to create the tests, but also
that less skills and training of the testers, e.g. in programming, is required.

Tests in Scout are however defined on a higher abstraction level than tools
that rely on a programming language or scripts, making tests in Scout easier to
understand but also less flexible to use. This limitation can however be handled,
to some extent, in Scout since it has a modular design that can be customized

4.7 Conclusions 97

for the unique characteristics of the SUT, but the general impact of the modular
design is still not known.

In future research, as presented in Section 4.8, the most pressing focus is the
need to evaluate the maintenance cost of tests created using Scout since a high
cost for maintenance could reduce the tool’s and AT’s viability for industrial
use.

4.7 Conclusions
Testing an application through the GUI is important but also a time consuming
and costly task to perform in practice. Tools and frameworks for GUI test au-
tomation can be used to lower the manual labor but the tests produced requires
a substantial development and maintenance effort that reduces the cost savings
from the automation effort. Augmented Testing (AT) and the tool prototype
Scout has been proposed as a solution to lower the cost of both creating and
maintaining test cases for testing an application through its GUI.

We performed two quasi-experiments and a survey with a total of 12 partic-
ipants from from two Swedish companies (Ericsson and Inceptive) to measure
the efficiency of Scout’s Augmented GUI, on two different web applications. The
results show that Scout requires less programming and test automation skills,
that the tests are easier to understand and follow and that creating effective test
cases is more efficient compared to the two state-of-practice approaches that we
investigated.

4.8 Future Work
Scout uses the same under-laying techniques, as other state-of-practice tools for
GUI test automation. Since both Protractor and Scout uses Selenium Web-
Driver as a driver for executing the tests, we have decided not to measure and
compare the time to automatically execute regression tests, in this study, since
an optimized tool should, at least in theory, have a similar execution speed. We
should however measure and compare the test execution speed with other tools
and techniques just to verify our assumptions, by additional research.

The results indicate that AT is a very promising technique for GUI test au-
tomation, but before we can draw any conclusions about the industrial viability
of AT, we also need to research the long-term maintenance cost of the tests

98
On the Industrial Applicability of Augmented Testing: An

Empirical Study

since that is one of the most reported problems for similar techniques and tools
designed for GUI test automation.

To further improve the effectiveness and quality of the test cases, in Scout, we
also need to research how to provide the tester with suggestions of, for example,
new paths to try or new values to enter that might reveal an issue or increase
the test coverage.

4.9 Acknowledgments
This work was supported by the KKS foundation through the S.E.R.T. Research
Profile project at Blekinge Institute of Technology.

Chapter 5

Similarity-based Web
Element Localization for
Robust Test Automation

Abstract

Non-robust (fragile) test execution is a commonly reported challenge in GUI-
based test automation, despite much research and several proposed solutions.
A test script needs to be resilient to (minor) changes in the tested application
but, at the same time, fail when detecting potential issues that require inves-
tigation. Test script fragility is a multi-faceted problem. However, one crucial
challenge is how to reliably identify and locate the correct target web elements
when the website evolves between releases or otherwise fail and report an issue.
This paper proposes and evaluates a novel approach called similarity-based web
element localization (Similo), which leverages information from multiple web
element locator parameters to identify a target element using a weighted sim-
ilarity score. This experimental study compares Similo to a baseline approach
for web element localization. To get an extensive empirical basis, we target 48
of the most popular websites on the Internet in our evaluation. Robustness is
considered by counting the number of web elements found in a recent website
version compared to how many of these existed in an older version. Results of
the experiment show that Similo outperforms the baseline; it failed to locate

100
Similarity-based Web Element Localization for Robust Test

Automation

the correct target web element in 91 out of 801 considered cases (i.e., 11%)
compared to 214 failed cases (i.e., 27%) for the baseline approach. The time
efficiency of Similo was also considered, where the average time to locate a web
element was determined to be four milliseconds. However, since the cost of web
interactions (e.g., a click) is typically on the order of hundreds of milliseconds,
the additional computational demands of Similo can be considered negligible.
This study presents evidence that quantifying the similarity between multiple
attributes of web elements when trying to locate them, as in our proposed Sim-
ilo approach, is beneficial. With acceptable efficiency, Similo gives significantly
higher effectiveness (i.e., robustness) than the baseline web element localization
approach.

Keywords: GUI Testing, Test Automation, Test Case Robustness, Web
Element Locators, XPath Locators

5.1 Introduction
Software testing is vital to ensure a software application’s quality, but it is also
time-consuming and costly in practice [71, 73]. Still, numerous reports highlight
test automation’s efficiency and ability to lower costs while ensuring high quality
of the released application [17, 28, 131].

Although automated testing has been proposed for different types of testing,
one of its main application areas in practice is in automated regression testing.
Automated regression testing is a way for testers to ensure each software re-
lease’s quality. Typically, on higher levels of system abstraction, e.g. Graphical
User Interface (GUI) level, it involves creating a suite of test scripts that em-
ulate user scenarios while checking, using oracles, that the application behaves
correctly [103, 108]. However, it is natural that new software releases contain
changes that can then break the automated regression tests. This necessitates
test suite maintenance which incur additional effort and costs to repair the test
scripts to ensure the test suite remains up-to-date. This maintenance cost is
especially high when testing an application through its GUI, since it frequently
changes between releases [26, 58, 152]. Additionally, these tests are affected
both by visual changes to the GUI and by changes to its underlying logic and
application under test (AUT) architecture. GUIs are also primarily designed
for humans, i.e., they are not designed for machine-to-machine communica-
tion, which presents additional challenges for automation, e.g., synchronization
between scripts and the AUT, which are not as prominent in lower-level test
techniques such as unit-testing [131].

5.1 Introduction 101

There are several different techniques for automated testing of a GUI appli-
cation [24], but one of the most commonly used approaches in practice when
testing websites (i.e., web applications) is to use the Document Object Model
(DOM) [4]. Although DOM-based approaches are specific to websites, similar
approaches can be found for testing GUI-based desktop and mobile applica-
tions, for which meta-information about GUI elements can be accessed via the
operating system or GUI library used by the application. In a DOM-based
approach, GUI web elements (buttons, anchors, text fields, labels, etc.) are
located using DOM properties, which include web element attributes, element
text, unique IDs, XPath’s [15], and CSS selectors [3]. DOM properties are,
however, sensitive to changes in the GUI of the website, which affect the ro-
bustness of the automated test execution as the website evolves from release
to release. This observation is often referenced as (test) script fragility (i.e.,
a lack of robustness) and frequently reported as a challenge by researchers
[25, 30, 72, 94, 108, 115, 118, 166], resulting in increased test maintenance,
costs, and lower AUT quality.

Naturally, significant changes to the website under test should cause test
execution to break since the cause of such test failures may indicate a defect
that needs to be addressed. However, minor changes might also break the
test execution, even though a manual tester might have considered the test
execution to succeed. Such minor changes that cause automated test execution
failures are thereby a source of unnecessary debugging and maintenance work,
especially since the test execution may seem to break for no apparent reason,
e.g., when the change is small and difficult to recognize for the human user. This
phenomenon of tests unpredictably failing has, as mentioned in the literature,
been summarized as GUI tests being fragile/lacking robustness to AUT changes
[60, 121].

There have been many attempts to address the fragility problem in the past
two decades [21, 49, 60, 100, 102, 150, 172]. Several approaches try to limit the
fragility problem by trying to build robust locators (e.g., [100]), i.e., locators
capable of identifying the correct element even if the page has changed. One of
the more recent attempts, proposed by Leotta et al., is to use multiple locators,
instead of just one locator, to identify a web element [99] in a website. The basis
of this approach is to utilize multiple sources of information to triangulate the
correct web element. Research has shown that the multi-locator approach can
effectively increase the probability of finding the correct web element since it is
unlikely that all locators used for localization of the web element are changed
simultaneously between two releases of a website.

102
Similarity-based Web Element Localization for Robust Test

Automation

A web element locator is defined as a method, function, approach, or al-
gorithm that locates a web element in a web page given a locator parameter.
The locator parameter is defined as a tuple that consists of a name and a value
that the locator can use when locating one or more web element(s). Common
types of single-locators use an XPath (path expression) or CSS expression as
a parameter but could also use the tag name or a web element attribute e.g.,
ID, name, or class name. XPath locators select one or more nodes in an HTML
DOM-tree when provided with a path expression as a locator parameter.

For this work, we refer to these first level locators as single-locators to avoid
confusing it with multi-locators. A multi-locator (ML) approach (e.g., the ap-
proach proposed by Leotta et al.) uses more than one single-locator when
localizing one or more web element(s) to increase the chance of finding the cor-
rect web element(s). Since we refer to Leotta et al.’s approach frequently in the
paper, we will refer to it as Leotta’s Multi-Locator (LML) to distinguish it from
the more general concept of multi-locator (ML). The LML approach is also our
selected baseline (see Section 5.4.2) that we compare with Similo.

To support the reasoning that using multiple sources of information im-
proves the effectiveness of web element localization, Leotta et al. showed in
their study [99] that the LML approach could reduce the number of failed lo-
calization attempts of existing web elements in six websites, from 12% down to
8%. In their study, they explicitly looked at failures caused by modifications to,
or rearrangement of, the GUI’s layout, look and feel, or DOM structure. While
the LML approach resulted in an impressive 30% reduction of failed localiza-
tion attempts, manually repairing locators due to technical limitations in the
localization technique is still associated with considerable effort (i.e., cost) and
warrants continued research.

This paper proposes a novel approach to web element localization for web-
sites realized in a locator approach that we call similarity-based web element
localization (in short Similo). Like the LML approach, Similo takes advantage
of information from multiple sources. Similo is not, by definition, a multi-locator
since it does not use the result gathered from a selection of single-locators like
the LML approach. Instead, Similo quantifies the similarity between multiple
attributes (locator parameters) of each candidate web element (i.e., possible
candidates) and the target element (i.e., the element with the desired locator
parameters) to identify the candidate element with the highest similarity to the
target element, i.e., the candidate element with the highest probability of being
the correct match for the target element. The Similo approach makes it possible
to take advantage of any locator parameters regardless if the locator parameters
can find a unique match or not. In comparison, the LML approach can only

5.2 Locating Web Elements 103

take advantage of locators that can identify a candidate web element uniquely.
However, since Similo targets the same challenge, and returns the same result,
it is natural to compare their performance in an experiment.

In summary, the purpose of Similo is to increase the robustness of locating
web elements in a website by comparing the similarity of web element locator
parameters to achieve more stable test execution of GUI-based tests over time
as the website evolves. In the reported study, we compare our approach with
the LML approach (i.e., baseline) in a controlled experiment where we measure
how many web elements could no longer be located between two releases, by
either approach, in 48 websites. Results of the experiment show that Similo
outperforms the baseline approach in terms of web element localization after
website change at reasonable execution times for practical applications.

The specific contributions of this paper are:

• A novel approach for more robust web element localization based on com-
parison of the similarity of web element locator parameters;

• An empirical study that shows the effectiveness and time efficiency of the
proposed approach compared to the baseline approach.

This paper is structured as follows. Section 5.2 gives a background of web
element locators and presents the LML approach. Section 5.3 covers the details
of the proposed Similo approach. The design, research questions, and procedure
of the empirical study we conducted are presented in Section 5.4. The results
are sketched in Section 5.5 and discussed in Section 5.6. Section 5.7 covers some
threats to the validity of this study. We present related work in Section 5.8,
and state conclusions and future work in Section 5.9.

A package for replicating the experiment is available for download from [10].

5.2 Locating Web Elements

Listing 5.1 shows an example of a simple test script, implemented in Java using
Selenium WebDriver [11], which checks the functionality of a contact form in
Figure 5.1. To improve the script’s readability, we removed all the synchro-
nization code needed to synchronize the script execution against the website by
delaying the script execution to match website events.

104
Similarity-based Web Element Localization for Robust Test

Automation

Figure 5.1: A contact form.

1 import org. openqa . selenium .By;
2 import org. openqa . selenium . WebDriver ;
3 import org. openqa . selenium . chrome . ChromeDriver ;
4 import static org. junit . jupiter .api. Assertions .*;
5 import org. junit . jupiter .api.Test;

7 public class ContactTests {

9 @Test
10 public void sendMessageTest (){
11 System . setProperty (" webdriver . chrome . driver ", "C :\\...\\

chromedriver .exe");
12 WebDriver webDriver = new ChromeDriver ();
13 webDriver .get("http :// mimicservice .com/ traveler ");
14 webDriver . findElement (By. linkText (" Contact ")). click ();
15 String text = webDriver . findElement (By. tagName ("H1")). getText ();
16 assertTrue (text. contains ("Get In Touch "));
17 webDriver . findElement (By.id("name")). sendKeys (" Michel ");
18 webDriver . findElement (By.id(" email ")). sendKeys (" michel . nass@bth .

se");
19 webDriver . findElement (By.id(" subject ")). sendKeys (" Contact me");
20 webDriver . findElement (By. linkText ("Send Message ")). click ();
21 text = webDriver . findElement (By. tagName ("H1")). getText ();
22 assertTrue (text. contains ("we will contact you shortly "));
23 webDriver .quit ();
24 }
25 }

Listing 5.1: Sample test script implemented in Java using Selenium WebDriver.

Following is a description of the steps taken by the script in Listing 5.1.
The test script begins by starting a new Chrome browser and navigating to the
website "mimicservice.com/traveler". Next, the script clicks on the "Contact"
link and verifies that the form’s heading is "Get In Touch". The script continues
by finding all the web elements that make up the form and fills it in by sending a

5.2 Locating Web Elements 105

text to each input field. Finally, the script clicks the "Send Message" button and
checks that the "we will contact you shortly" message appears on the webpage
before, finally, closing the browser. As such, the script evaluates the webpage
behavior by assuming that certain labels, i.e. the oracle, can only be checked if
the website is operating correctly.

As can be seen from the test script example, the findElement method in
Selenium WebDriver is used frequently for locating each of the web elements
that the test script interacts with. In fact, the method is used every time an
action is performed, a web element retrieved, or the value of a web element
acquired to check (or assert) the AUT’s behavior. The findElement method
locates and returns the first web element that matches the supplied locator
parameter. When there is no match in the current webpage, the findElement
method throws a NoSuchElementException that breaks script execution.

Broken locators occur due to one out of two primary reasons; (1) that the
web element is no longer present, or that the DOM-structure (or HTML code) of
the application has been modified such that the web element has other proper-
ties [60, 81, 99], or (2) that the requested web element is not yet available during
runtime of the application (synchronization between application and test run-
ner) [37, 57]. We can address the first problem by deleting the reference to the
removed/changed web element in the test or by updating the locator param-
eter (By class option) used by the findElement method, e.g., updating the ID
attribute. A tester can correct the second problem in an automated test script
by adding or modifying its synchronization code (generally a wait command,
Implicit, Explicit and Fluent Wait in Selenium WebDriver), i.e., halt the test
execution for a more extended time period to ensure that the locator is available.

Both types of problems are common in practice and also the leading cause
of script maintenance costs [121]. Therefore, to reduce these costs, it is crucial
to select locators that are resilient to changes in the AUT to make them robust.

Figure 5.2 shows a newer (to the left) and older (to the right) version of
the same website (the homepage of YouTube.com). Some target web elements
are marked using colored rectangles in the old version of the website (to the
right). In this paper, we refer to the web elements in the older version, which
we are trying to locate in the newer version, as target web elements. All the web
elements in the newer version of the website are referred to as candidate web
elements (i.e., the candidates that might be our target). In the example, each
target web element has a corresponding candidate web element in the newer
version of the website (marked with the complementary color).

There are eight different locators available in Selenium WebDriver, designed
for finding elements by ID, name, class, tag, link text, partial link text, XPath,

106
Similarity-based Web Element Localization for Robust Test

Automation

Figure 5.2: Web elements present in both the newer (left) and older (right)
versions of the YouTube.com website. Some of the content is blurred since it
could be sensitive or copyrighted.

and by CSS. We refer to these locators, individually, as single-locators since
they try to locate one or many web elements using only one locator parameter
(e.g., a single XPath expression or "ID" value).

Locating a web element using an absolute XPath is a common use of single-
locators. In the example illustrated by Figure 5.2, we observe that an absolute
XPath extracted from the YouTube logo in the older website is likely to work
also in the newer version of the website since the GUI has a similar appearance.
However, we cannot guarantee that the absolute XPath needed to locate the
web element is identical among the two versions of the website without looking
at the DOM structure. We also note that the History menu item, marked with
a black rectangle, has been moved from the third item in the older menu to the
fifth item in the newer menu. Therefore, it is likely that the absolute XPath
has changed for that web element (since the child index changed, such as, for
example, div[3] to div[5]). Any change in the absolute XPath, used by a single-
locator, would result in a failed localization attempt and a failed test script.
Some studies [95] shows that absolute XPath locators are very fragile since
they contain the entire specification of how to traverse the DOM tree, from the
root to the target element. However, the other kinds of locators that are more
robust (e.g., the ones based on the ID attribute) can be broken by some web
app evolution patterns (e.g., a modification to the app’s IDs). This happens
since they all represent a single point of failure, even if with a lower associate
probability w.r.t. absolute XPath. For this reason, considering multi-locators
can help further reduce the fragility of the web element localization steps.

5.2 Locating Web Elements 107

5.2.1 Multi-Locator (LML) approach

Leotta et al. proposed the Multi-Locator (LML) approach [99], which, instead of
using a single-locator, takes advantage of the results from several single-locators
and a voting procedure to combine their outputs and improve the accuracy of
locating the correct web element across website’s or app’s evolution. In the
worst case, even one working single-locator might be enough to find the desired
web element. This approach is valuable since a more reliable way of locating
web elements improves the robustness of test execution which, in turn, reduces
the need for script maintenance and thereby cost.

The idea of Leotta et al. is based on the assumption that the various al-
gorithms for the creation of locators have different strengths and weaknesses;
they often exhibit complementary performance. For this reason, their approach
uses a voting decision procedure to aggregate the results of multiple alternative
locators for producing a consolidated locator.

Leotta et al. experimented with four different variants of the voting decision
procedure for the LML approach: (1) unweighted worst order, (2) unweighted
best order, (3) weighted, and (4) theoretical limit. These variants produce
slightly different results. For the unweighted variants (1 and 2), each kind of
single-locator is of equal importance (one vote each), and both will only give
a different result when more than one candidate receives the same number of
votes (a tie). Each kind of locator in the weighted variant (3) is assigned a
weight based on resilience to change, i.e., computed on a corpus of web appli-
cations for which successive versions are available. Each vote is proportional
to that weight. The candidate web element with the highest sum of weighted
votes will be selected as the best matching web element. The theoretical limit
(4) is a particular case where we assume that the approach can pick the correct
web element if any single-locator returns the right web element. As the name
suggests, this variant is only possible in theory but is still something to aim
for and compare against since it is guaranteed to perform at least as good as
the other three (i.e., the best absolute performance achievable with the LML
approach). In their study, Leotta et al. confirmed that the weighted LML
approach performed better (about 30% fewer broken locators) than the most
robust single-locator included in the experiment (i.e., ROBULA+ [100]), thus
confirming the hypothesis that using multiple sources of information is valu-
able for web element localization. As expected, the theoretical limit variant
performed the best results, with about 16% fewer broken locators, than the
weighted variant. We decided to compare our proposed approach against the
theoretical limit variant of the LML approach in our experiment to avoid the

108
Similarity-based Web Element Localization for Robust Test

Automation

possible bias of selecting or calculating a new set of weights required by the
weighted variant.

Even though the LML approach increases the robustness compared to the
best of the single-locators with up to 30 percent w.r.t. the state of the art
solutions, with our further studies we discovered that, in certain cases, the
approach still fails to find a significant number of web elements. As such, further
research is warranted since advances in locating the correct web elements impact
test script robustness and, thereby, maintenance costs.

5.3 The Similo approach
The similarity-based web element localization (Similo) approach attempts to
increase the robustness even further than the LML approach. Similar to the
LML approach, Similo tries to take advantage of multiple sources of information
instead of just one as a single-locator. When comparing Similo with the LML
approach, Similo can take advantage of locators that pinpoint more than one web
element, unlike LML, which can only be used with locators that can identify one
unique web element. For example, an XPath locator pinpoints an element within
the DOM D1 model by defining a set of predicates on such element properties.
The DOM can change during the app evolution (D2), and the web element of
interest can have some of its element properties changed. In such a case, the
single-locator returns no web element. Contrary, Similo looks separately at each
of the properties (in this paper called locator parameters) of each element in
the DOM D2 model. It returns all web elements that have a partial match. The
core functionality of the approach consists of finding the web element among a
set of candidate web elements (e.g., web elements extracted from a webpage),
which has the most similar locator parameters to the target web element (i.e.,
desired capabilities). This is achieved by comparing the locator parameters of
the target web element (from the DOM D1) with the locator parameters of each
of the candidate web elements (in the DOM D2). Each comparison results in a
similarity score, a sum of the outcomes of the individual comparisons multiplied
with a weight. The candidate web element with the highest similarity score is
returned as the most similar web element found in the DOM D2.

Figure 5.3 contains an overview of how locator parameters are compared,
weighted, and summarized into a similarity score. A locator parameter can be
any feature, visible or non-visible, of the web element, e.g., text, ID, XPath,
size, or location. Each locator parameter from the target web element is com-
pared with the corresponding locator parameter in the candidate web element

5.3 The Similo approach 109

Figure 5.3: Overview of how to calculate the similarity score between two sets
of locator parameters.

using a comparison operator. A comparison operator can be any function that
can compute the similarity of two locator parameter values and return a value
between zero and one (or binary zero or one). Zero if there is no similarity
between the compared locator parameters (target and candidate), one when the
compared locator parameters are identical, and, if reasonable for the specific
operator, a value between zero and one if there is some degree of similarity be-
tween the compared locator parameters. The outcome from each comparison is
multiplied by its weight (representing the reliability across DOM version of each
kind of locator parameter) and summarized into the similarity score. Weights
can be based on experience, be calculated, or learned from empirical data. A
high similarity score indicates high similarity between the target and candidate
web element. When all candidate web elements have been associated with a
similarity score, the candidate web element with the highest score is selected as
the most similar (i.e., best matching locator parameters) web element.

Algorithm 1 Similo finds only the best candidate
Require: targetWebElement
Require: candidateWebElements

mostSimilarWebElement = null
highestSimilarityScore = 0
for all candidateWebElement in candidateWebElements do

similarityScore = calculateSimilarityScore(targetWebElement, candi-
dateWebElement)
if similarityScore > highestSimilarityScore then

mostSimilarWebElement = candidateWebElement
highestSimilarityScore = similarityScore

end if
end for
return mostSimilarWebElement

110
Similarity-based Web Element Localization for Robust Test

Automation

Algorithm 2 Similo finds all candidates and ranks them
Require: targetWebElement
Require: candidateWebElements

rankedCandidates = new List()
for all candidateWebElement in candidateWebElements do

similarityScore = calculateSimilarityScore(targetWebElement, candi-
dateWebElement)
rankedCandidates.add(candidateWebElement, similarityScore)

end for
sortedCandidates = rankedCandidates.sort(highest similarity score first)
return sortedCandidates (highest similarity score first)

There are, at least, two ways of realizing the Similo approach. The first is to
iterate through all the candidate web elements, compare each candidate with the
target (i.e., using the locator parameters computed for each web element) to get
the similarity score, and remember the candidate with the highest score, as in
Algorithm 1. Another way is to calculate a similarity score for all the candidates
(i.e., by comparing locator parameters) and then sorting all the candidates based
on the similarity score (highest score first), as in Algorithm 2. While the first
variant is slightly more efficient (no need to sort the list of candidates), the
second variant will not only give us the most similar web element (i.e., highest
similarity score) but also the runners-up. A ranked list of similar web elements
could be helpful when evaluating or exploring other candidates, e.g., when the
most similar web element is not adequate (e.g., a test raises an error following
the interaction with such element).

5.3.1 Selecting Locator Parameters and Comparison Op-
erators for Similo

In the study presented by Leotta et al., all the XPath locators were designed
to identify single web elements uniquely. However, Similo is not restricted to
this behavior; locator parameters that do not identify unique matches can also
be used. Hence, the locator parameters selected for the experiment include
absolute XPath that can uniquely identify one web element in a webpage and
the Tag locator that can only locate one unique web element when there is only
one web element with a specific Tag present in the entire webpage.

5.3 The Similo approach 111

Figure 5.4: Overview of how to calculate the similarity score between two sets
of locator parameters in our experiment.

We selected 14 different locator parameters that could be of value when
calculating the similarity score and a corresponding comparison operator to use
when comparing the locator parameter values. The selected locator parameters
aim to cover the majority (with a few exceptions explained below) of commonly
used properties from various tools and approaches for web element localization
and script repair. Selenium WebDriver API [11] contains eight locator types (id,
name, class, tag, link text, partial link text, XPath, and CSS), while Selenium
IDE [11] selects the first unique locator from a prioritized list (id, link text,
name, and various XPaths). Test script repair tools WATER [49] and COLOR
[86] used ten (id, xpath, class, linkText, name, tagname, coord, clickable, visible,
zindex, and hash) and nineteen properties respectively (id, class, name, value,
type, tag name, alt, src, href, size, onclick, height, width, XPath, X-axis, Y-
axis, link text, label, and image) when suggesting a repair for the broken script.
WATER and COLOR are further described in Related Work (Section 4.2).

Table 5.1 contains a mapping of locator parameters used by the four ap-
proaches to the selection used by Similo. We decided to use DOM properties
only in this study, leaving out the image hash (respectively called hash in WA-
TER [49] and image in COLOR [86]) created from the pictorial user interface
[24] (i.e., the page rendering produced by the browser) for two reasons: (1) the
pictorial user interface is not present in the DOM and could not be generated
by our Javascript function that extracts locator parameters (as said is gener-
ated by the browser and so could show minor differences across browsers or
even different versions of the same browser); (2) taking a screenshot of each of

112
Similarity-based Web Element Localization for Robust Test

Automation

Table 5.1: Mapping of locator parameters.

Similo Selenium WebDriver Selenium IDE WATER COLOR
Tag tag - tagname tag name
Class class - class class
Name name name name name
Id id id id id
HRef - - - href
Alt - - - alt
Absolute XPath XPath XPath xpath XPath
ID rel. XPath XPath XPath xpath XPath
IsButton - - clickable onclick
Location (x,y) - - coord X-axis+Y-axis
Area (w*h) - - - size
Shape (w/h) - - - -
Visible Text text + partial link text link text linkText link text+label
Neighbor Texts - - - -
- - - hash image
[all visible] - - visible -
[all in front] - - zindex -
- - - - type
- - - - src

the web elements (required for comparing all the possible candidate elements)
would have taken a significant amount of time (a few tenths of a second per
screenshot), reducing the time efficiency of Similo by orders of magnitude. The
locator parameters and their corresponding comparison operators are visualized
in Figure 5.4. We decided to use the Java String method equalsIgnoreCase (de-
noted equals) to compare some of the selected locator parameters (e.g., Tag,
Id, Name, and IsButton) since they are only similar when the compared values
are identical. While Tag, Id, and Name are commonly used attributes in a web
element, the IsButton parameter (inspired by the clickable property in WATER
and onclick in COLOR) was calculated to the value true or false based on the
attributes Tag, Type, and Class.

View the replication package [10] for details on calculating the value of the
IsButton locator parameter. Texts, links, and XPaths (e.g., Class, HRef, Alt,
Absolute XPath, ID relative XPath, and Visible Text) were compared using
Levenshtein distance (normalized and inverted to get the similarity) since they
could be similar even if the compared locator parameters are not identical. Vis-
ible Text was constructed by extracting the first non-blank text from the Text,
Value, and Placeholder (in that order) attributes of the web element. We did
not include the type and scr properties from COLOR since they are only appli-
cable to some types of elements. We used Euclidean distance (normalized and
inverted to get the similarity) for comparing the area and shape of the web ele-

5.3 The Similo approach 113

ments since width and height is likely to remain unchanged in between software
releases according to the COLOR study by Kirinuki et al. [86]. Area was calcu-
lated by multiplying the width with the height and shape by dividing the width
by the height. We decided to use the Euclidean distance (normalized and in-
verted) between the upper and left location of the compared web elements since
a web element is likely to be close to its original position on the screen (again,
based on the study by Kirinuki et al.). The Location comparison returns one
when the web elements have the same location, zero when the distance exceeds
100 pixels, and a value between zero and one linear to the difference in distance.
Web browsers interpret margins slightly differently, resulting in different coor-
dinates for the same web element. The value of 100 pixels was chosen based on
our experience with GUI-based test automation to give some flexibility in the
browser layout of the web elements. Neighbor Texts contain a space-separated
text of words collected from the visible text of nearby web elements (including
the target or candidate web element). Instead of comparing Neighbor Texts us-
ing Levenshtein distance, we assumed to get a better result by comparing how
many words the compared locator parameters have in common since the words
gathered from the neighbor texts are unordered (all web elements have a differ-
ent set of neighbors) making the Levenshtein distance less useful. For example,
web element A has two neighbors with the texts: "OK" and "Cancel", result-
ing in the Neighbor Text: "OK Cancel". Web element B has three neighbors:
"Cancel", "Help", and "OK," resulting in the Neighbor Text: "Cancel Help OK".
Calculating the similarity using Levenshtein distance results in the value 0.21,
while the similarity is 0.66 when using the word count since two out of three
words are present. As an example, five common words out of 10 possible would
result in a value of 0.5. We did not include WATER’s visible and zindex proper-
ties since Similo only uses visible web elements. Note that all distance functions
have been normalized (zero to one) and inverted (1 - normalized distance) when
calculating the similarity. We refer to the replication package [10] for further
details on implementing the comparison operators and extracting the locator
parameters from the web elements. We want to stress that Similo can use any
selection of locator parameters, comparison operators, and weights and that the
choice (illustrated in Figure 5.4) will impact the results. For this paper, we did
initial experiments and selected ones that give generally robust results. Future
work should perform more systematic experiments to understand the effect of
these choices.

114
Similarity-based Web Element Localization for Robust Test

Automation

Table 5.2: Locator parameters in newer and older version of the YouTube.com
website.

Newer YouTube.com ver-
sion

Older YouTube.com ver-
sion

Simil. Weight

Tag: SPAN SPAN 1 1.5
Text: History History 1 1.5
XPath: /html[1]/body[1]/ytd-

app[1]/div[1]/ytd-
mini-guide-
renderer[1]/div[1]/ytd-
mini-guide-entry-
renderer[5]/a[1]/span[1]

/html[1]/body[1]/div[4]/div[4]
/div[1]/div[1]
/div[1]/div[1]/div[1]/ul[1]/li[1]
/div[1]/ul[1]/li[3]
/a[1]/span[1]/span[2]/span[1]

0.41 1

ID-
based
XPath:

id("content")/ytd-
mini-guide-
renderer[1]/div[1]/ytd-
mini-guide-entry-
renderer[5]/a[1]/span[1]

id("history-guide-
item")/a[1]/span[1]/span[2]
/span[1]

0.33 1

Class: title style-scope ytd-mini-
guide-entry-renderer

0 1

5.3.2 Selecting Weights for Similo

We initially assigned all the weights of the 14 locator parameters to the value
one. Next, we divided the locator parameters into two groups. We placed the
locator parameters that are (according to the COLOR study by Kirinuki et
al. [86] more stable (i.e., less likely to break between software releases) in the
first group and the remaining in the second group. The first group contains
the locator parameters Name, Id, Visible Text, and Neighbor Texts since they
got the highest weights (based on a combination of stability and uniqueness)
in the COLOR study. The locator parameter Tag was also added to the first
group since it has high stability, according to the COLOR study. All the other
locators parameters were placed in the second group. Finally, we added 0.5
to the locator parameter weights in the first group and removed 0.5 from the
locator parameter weights in the second group. The resulting locator property
weights are illustrated in Figure 5.4. Bold connector lines represent a weight of
1.5, and the thinner lines represent a weight of 0.5. We realize that it would
likely be possible to attain more optimal locator parameter weights. Still, we
assumed a simple approach (motivated by prior work in the industry) would be
sufficient for the experiment and so to evaluate the effectiveness of the Similo
approach.

5.4 Experimental study 115

5.3.3 Example of Calculating a Similarity Score

As an example of how to create a similarity score, five locator parameters ex-
tracted from the History menu button (indicated by a black rectangle) in Fig-
ure 5.2 are listed in Table 5.2. We note that the Tag and Text parameters
are identical in both website versions. XPath and ID-based XPath have, how-
ever, changed between versions, and the Class parameter was unassigned in the
older version of the website. In this example, we assume using the Levenshtein
distance as a comparison operator for all the locator parameters. We use the
normalized version of the Levenshtein distance (GLD NED2) in this paper as
defined by Yujian et al. [169], and the similarity is calculated as the inverse (1
- distance) of the normalized Levenshtein distance that returns a value between
zero and one. The comparison operator would return one when comparing the
newer and older version of the Tag parameter since they are identical (SPAN).
We get the same result when comparing the Text parameters in both versions
since they are also identical (History). Comparing both versions of the XPath
parameter would result in a value between zero and one since the XPaths in
both versions begin and end in the same way, even though they are not identi-
cal. The comparison result is zero when comparing the Class parameters (both
versions) since they have nothing in common (the older version is blank). As-
suming that (1) the comparison operator returns the similarity specified in the
Similarity column and (2) we use the weights from the Weight column in Ta-
ble 5.2; the resulting similarity score, computed between the old target element
and a possible candidate from the new page, would be 3.74 computed as (1 *
1.5 + 1 * 1.5 + 0.41 + 0.33 + 0).

5.4 Experimental study

This section presents the research design, the research questions, the research
procedure of the performed empirical study. The first objective of the experi-
ment is to evaluate the difference in robustness between Similo and the baseline
approach by comparing the ratio of located and non-located web elements in
two different releases of the same webpage. We used public webpages for the
experiment where changes to the pages include addition, change, and removal
of web element attributes and web elements. As a secondary objective, we eval-
uated the efficiency of Similo to make sure that its performance is viable for
practical use.

116
Similarity-based Web Element Localization for Robust Test

Automation

5.4.1 Research Questions
The study aims to answer the following research questions:

• RQ1: What is the robustness (measured as the ratio between located
and non-located web elements) of the Similo approach compared to the
baseline LML approach?

• RQ2: How well does the Similo approach perform in terms of time effi-
ciency?

The first research question (RQ1) is answered by looking at the ratio of
located and non-located web elements on two different versions of 48 websites
(801 web elements in total). We figured that 801 web elements in 48 websites
would be enough since a previous study, performed by Leotta et al., evaluated
the LML approach using six websites and a total of 675 web element locators
[99]. Similo is more robust than the baseline if Similo can correctly locate
more web elements than the baseline approach. Research question 2 (RQ2)
is answered by measuring the execution time of locating web elements using
Similo. The time efficiency of Similo would be acceptable if Similo could be of
practical use for the industry. An order of magnitude lower average execution
time (to locate one web element using Similo) than the expected execution time
of a typical test step (as part of a test case) would likely be sufficient since the
gain in robustness would likely outweigh the loss in time efficiency.

5.4.2 Selecting the Baseline Approaches
Our previous literature review revealed several different approaches and algo-
rithms targeting the problem of robust localization of web elements [121]. You
can find more information about some of the approaches and algorithms in Re-
lated Work (Section 4.2). Two approaches stood out as the most predominant
(i.e., the most robust). The first one was the Multi-Locator approach proposed
by Leotta et al. (LML), and the second one was the ATA approach proposed
by Thummalapenta et al. [151], later refined by Yandrapally et al. [166] (now
going by the name ATA-QV).

We decided to compare our proposed approach with LML, but we also
planned to use the ATA-QV [166] algorithm as a baseline in our empirical eval-
uation since its contextual clues share some similarities with both the LML
approach and our proposed approach. However, the ATA-QV system is not

5.4 Experimental study 117

openly available1 and not trivial to implement based on the descriptions in
the papers that presented it. For this reason, we contacted the authors of the
ATA-QV paper and, with their helpful guidance, tried to re-implement its core
elements. However, when trying our implementation, we could not prove (due
to the lack of an oracle) that our version performed to a level consistent with
the original experiments, and we had to exclude the re-implementation from our
experiments.

5.4.3 Selecting single-Locators for LML

Leotta et al. used five XPath locators in a previous experiment [99]. The loca-
tors were: absolute XPath, relative ID-based XPath, Selenium IDE, Montoto,
and Robula+. In consultation with two of the original authors, also co-authors
of this paper, we decided to use the same selection of locators in our experiment.

We decided to use a similar, but not identical, implementation of the XPath
locators as the ones used by Leotta et al. since we intended to automatically
generate all the XPath locators using Java code instead of manually creating
them from the browser to reduce some effort. Instead of relying on the (discon-
tinued) FirePath browser plugin [98], we created the corresponding JavaScript
code for generating both absolute and relative ID-based XPaths. The Type-
Script code for ROBULA+, publicly available online2, was manually translated
into JavaScript code [100]. We created JavaScript code for generating the XPath
locator proposed by Montoto et al. from the pseudocode presented in their work
[117]. Since the algorithm proposed by Montoto et al. is not guaranteed to re-
sult in a unique XPath, we decided to ignore that locator when this instance
occurred and instead focus on the four remaining locators for the LML approach.
We constructed the Selenium IDE [12] locator based on the open-source code
publicly available in GitHub [6]. The Javascript source code for all XPath gen-
erators was too large to include in this paper (about 400 lines of Javascript
code) but is available in the replication package [10].

1It is under copyright of a commercial entity and it was not clear if we could get full
access to and use the source code in a reasonable time (or ever). The full implementation is
extensive, encompassing more than 10K lines of code and is no longer maintained; it is thus
questionable if we would be able to compile and execute it without considerable investment
of additional time.

2https://github.com/cyluxx/robula-plus/blob/master/README.md

118
Similarity-based Web Element Localization for Robust Test

Automation

Figure 5.5: Selection of websites, website versions, and target web elements.
The older version was selected as the closest version in the archive that was a
random number of months, sampled in the range of 12 to 60 months old.

5.4.4 Selecting Websites
Figure 5.5 visualizes the procedure that we adopted to select websites, website
versions, and target web elements for the experiment, further detailed in this
and the following sections.

Alexa.com is a site that ranks websites based on global traffic [1]. The rank
is calculated from unique visitors and page-views over the past three months.
We selected the top-rated websites in the United States for our experiment
to avoid websites that default to a language that we, the authors, could not
fully understand (e.g., Chinese or Russian). The benefit of selecting websites
from Alexa.com is that the top-rated websites are well known and that the
selection is unbiased since we have no control over the ranked websites. Still,
they represent commonly used websites that, most likely, have extensive testing
to ensure consistent quality to its many users. Another benefit of selecting
websites with heavy use and traffic is that older versions of these sites are
more likely to be available on archiving sites; see further on this aspect below.
We selected the top 50 websites (publicly listed on Alexa.com without a paid
subscription) with two exceptions; (1) the website Force.com was excluded since
the browser forwarded it to the included website Salesforce.com (both URLs

5.4 Experimental study 119

point to the same website), and (2) the website Chaturbate.com was excluded
since the first page warned the visitor about adult content resulting in a total of
48 included websites. Chaturbate.com was excluded based on two motivations:
(1) the URL did not point to the actual homepage, and (2) a website with adult
content goes against the ethical guidelines prohibiting adult or discriminating
content.

5.4.5 Selecting Website Versions
To determine the robustness of each approach, two versions of the 48 websites
from Alexa’s list were required for the experiment, i.e., to determine if the web
elements in the newer version could be located using the locator parameters
extracted from the web elements in the older version. The Internet Archive
website [7] was used to acquire the versions since it stores previous versions of
a large selection of websites. The later versions of the websites were acquired in
December of 2020 within a span of a few days, primarily affected by the sampled
web sites availability on the Internet Archive.

In the previous work by Leotta et al., the time difference between versions of
the subject websites was 12 to 60 months and about 36 months on average. We
decided to replicate this design and sampled the older websites using a random
number, R, in the interval of 12 to 60 months backward in time for each website.
Specifically, we sampled the version of the website available on the archive site
and as close to R months older than the newer version. Versions that were
exactly R months older could not always be acquired since the Internet Archive
does not back-up the websites daily.

5.4.6 Selecting Target Web Elements
We manually selected target web elements from each of the 48 website home-
pages that: (1) were possible to perform actions on (e.g., anchors, buttons,
menu items, input fields, text fields, check-boxes, and radio-buttons); (2) can
be used for assertions or synchronization (e.g., top-level headlines); (3) belong
to core functionality of the website homepage; (4) are present in both versions of
the website homepage. A homepage is, in this context, the start webpage, in a
website, loaded by the browser when using the URL extracted from Alexa.com.
Figure 5.2 shows an example where target web elements in the newer (to the left)
and older (to the right) versions of the YouTube.com website are indicated with
rectangles of the same color. Each rectangle indicates one target web element.
Note that these images were generated manually for the purpose of showing the

120
Similarity-based Web Element Localization for Robust Test

Automation

reader examples of changes that can occur on a website. Hence, the images are
not outputs from Similo, nor essential to the approach in any way.

We generated an absolute XPath for each target web element in the older
and newer versions of each website. The XPath from the older website version
will be used when retrieving the web element used for generating single-locators
and extracting locator parameters for Similo. We will use the XPath from the
newer version as an oracle to verify that the correct web element was located.

The number of target web elements selected (801 in total) from the 48 web-
sites are listed in Table 5.3 along with the date of the older and newer website
versions and the number of randomly chosen months between the releases.

Note that the number of selected target web elements ranges between two
and 45. Some homepages are very similar between versions, while others are
completely redesigned with almost nothing in common between the older and
newer versions. While the Internet Archive provides us with a convenient way
of retrieving and comparing different website versions, a drawback with this
service is that the websites are static (frozen in time). As such, there is no
guarantee that the websites will respond to interaction (e.g., clicking a link) in
the same way as a dynamic website (not frozen in time). To mitigate the risk of
issues due to the static behavior, we used only web elements from the homepage
(start page) of each website. This design choice poses a potential threat to our
study since the web elements on the homepage might not contain the complete
variety of tags as the entire website. We created a list of tag names that we
expected to find in a good enough sample of websites to address this threat. The
list included the following tags: input, button, select, a, h1, h2, h3, h4, h5, li,
span, div, p, th, tr, td, label, svg. We gathered this list of commonly used tags
from our previous experience of extracting web elements from websites [120].
Next, we extracted and counted the tag names of all the web elements for each
application included in the study. We discovered that the only tag that is not
represented by our sample of applications is the th tag, that five websites use
the related td tag, and the tr tag is used by three. One possible explanation for
the lack of th tags might be that the th tag is no longer needed since modern
websites use style sheets when formatting the appearance of tables. As such,
we concluded that only one out of 18 (5.6%) of the tags were unrepresented in
the sample, which was considered reasonable for continued evaluation.

5.4.7 Locating Web Elements
Until this step, the preparations were performed manually. Still, this final step,
to try to locate all target web elements in the newer version of the website, was

5.4 Experimental study 121

Table 5.3: The number of target web elements selected from the older and newer
versions of each website.

Website Months Older version Newer version Target elements
Adobe.com 28 2018-07-02 2020-11-02 2
Aliexpress.com 44 2017-04-01 2020-12-01 39
Amazon.com 44 2017-04-02 2020-12-01 10
Apple.com 38 2017-10-02 2020-12-01 10
Bestbuy.com 32 2018-04-02 2020-12-01 40
Bing.com 12 2019-12-01 2020-12-01 5
Chase.com 24 2018-12-02 2020-12-02 31
Cnn.com 32 2018-04-02 2020-12-01 16
Craigslist.com 56 2016-03-31 2020-12-02 45
Dropbox.com 12 2019-12-02 2020-12-04 10
Ebay.com 30 2018-06-01 2020-12-02 25
Espn.com 12 2019-12-01 2020-12-02 23
Etsy.com 14 2019-10-02 2020-12-01 13
Facebook.com 49 2016-11-01 2020-12-01 25
Fidelity.com 35 2018-01-02 2020-12-02 19
Foxnews.com 35 2018-01-01 2020-12-01 29
Google.com 28 2018-08-01 2020-12-01 20
Hulu.com 12 2019-12-01 2020-12-02 2
Imdb.com 18 2019-06-02 2020-12-01 12
Indeed.com 60 2015-12-02 2020-12-01 13
Instagram.com 30 2018-06-02 2020-12-02 15
Instructure.com 37 2017-11-01 2020-12-02 2
Intuit.com 20 2019-04-01 2020-12-02 11
Linkedin.com 40 2017-08-02 2020-12-02 4
Live.com 40 2017-08-01 2020-12-01 3
Microsoft.com 54 2016-06-02 2020-12-01 4
Microsoftonline.com 16 2019-08-02 2020-12-01 6
Myshopify.com 59 2016-01-01 2020-12-01 2
Netflix.com 50 2016-10-03 2020-12-01 3
Nytimes.com 24 2018-12-01 2020-12-02 23
Office.com 21 2019-03-01 2020-12-01 12
Okta.com 37 2017-11-02 2020-12-04 10
Paypal.com 17 2019-07-02 2020-12-02 23
Reddit.com 45 2017-03-04 2020-12-01 30
Salesforce.com 22 2019-02-01 2020-12-01 17
Spotify.com 38 2017-10-01 2020-12-01 17
Target.com 42 2017-06-02 2020-12-01 17
Twitch.tv 57 2016-03-01 2020-12-02 5
Twitter.com 41 2017-07-02 2020-12-01 20
Ups.com 41 2017-06-29 2020-11-27 29
Usps.com 36 2017-12-02 2020-12-01 36
Walmart.com 39 2017-09-02 2020-12-01 7
Wellsfargo.com 14 2019-10-02 2020-12-01 35
Wikipedia.org 39 2017-09-01 2020-12-02 39
Yahoo.com 25 2018-11-01 2020-12-02 17
Youtube.com 16 2019-08-01 2020-12-01 8
Zillow.com 40 2017-08-01 2020-12-01 9
Zoom.us 55 2016-05-01 2020-12-02 8

122
Similarity-based Web Element Localization for Robust Test

Automation

Figure 5.6: The process of locating a candidate web element from the absolute
XPath of a target web element.

executed automatically using Java code to improve the accuracy and speed of
the experiment. We initially intended to run all the 40 websites at once but
decided to execute one website at a time since the Internet Archive website is
slow and unreliable. This design choice makes it possible to rerun a website in
case of a browser timeout.

Figure 5.6 shows the process of locating a candidate web element, in the
newer version of a website, from the absolute XPath of each target web ele-
ment, in the older version of the same website. First, the target web element,
in the older version of the website, is located from its absolute XPath retrieved
manually (described in Section 5.4.6). A collection of five single-locators (abso-
lute XPath, relative ID-based XPath, Selenium IDE, Montoto, and Robula+)
are then created from the identified target web element. The voting mechanism
in LML uses this collection of single-locators. Next, each single-locator is exe-
cuted in the newer version of the website, trying to locate the correct candidate
web element. For each single-locator that identifies precisely one candidate web
element, the absolute XPath of the identified candidate web element is com-
pared to the correct absolute XPath (i.e., the oracle that is the absolute XPath
of the web element in the newer version that actually corresponds to the target
web element in the older version of the same website) previously retrieved in
Section 5.4.6. The theoretical limit version of LML, which we compare to Sim-
ilo, is successful (i.e., located) if any of the five single-locators can identify the
correct web element.

Fourteen different locator parameters for Similo are also created from the
target web element. The approach and the locator parameters for Similo are
described in Section 5.3 and 5.3.1. Similo compares all fourteen locators pa-

5.4 Experimental study 123

Table 5.4: Description of the localization result.

Localization result Description
Located The localization approach is able to pick the correct

candidate web element with an XPath matching the
oracle.

Non-Located The localization approach is unable to find a match
among the candidate web elements, or it finds a
match among the candidate web elements, but the
XPath is not matching the oracle.

rameters of the target web element with the corresponding locator parameters
in each candidate web element and returns the most similar candidate (the one
with the highest similarity score). As with LML, the XPath of the most similar
candidate web element is compared to the correct absolute XPath to evaluate
if the target web element has been (correctly) located or not.

Table 5.4 contains a summary of the two possible outcomes after a localiza-
tion attempt. The absolute XPath of the candidate web element is compared
with the absolute XPath of the correct target web element (i.e., the oracle) using
string comparison. Since a modified web element in a webpage can result in a
slightly altered XPath, even though it is still the same visual GUI component, we
decided to add some tolerance in the string comparison. Two identical XPaths
are, of course, considered a match. We also decided that two XPaths match
if only one element has been added (or removed) at the end of the XPath.
In our case, the XPath: "/html[1]/body[1]/main[1]/section[1]/ul[1]/li[1]/a[1]"
matches the XPath: "/html[1]/body[1]/ main[1]/section[1]/ul[1]/li[1]" but not
the XPath:
"/html[1]/body[1]/main[1]/section[1]/ul[1]". Using a tolerance in the XPath
comparison is not as reliable as a manual oracle. Still, it is faster and unbi-
ased since the outcome of both approaches is validated in the same way.

To provide an example that highlights the complexity of the oracle and the
choice of our comparison strategy, we examined the YouTube logo marked with a
blue rectangle in Figure 5.2 in more detail. The HTML code from the YouTube
logo in both the older and newer version of the YouTube.com homepage is listed
in Listing 5.2. Let’s assume that we manually selected the anchor tags (a) in
the older and newer versions as the target web elements. A locator approach
that can use information extracted from the older version of the HTML DOM
to locate the anchor in the newer version is successful in locating the target web

124
Similarity-based Web Element Localization for Robust Test

Automation

element. But is it also correct if the locator approach identified the "div" element
inside the anchor (in the newer version) as the best matching web element? Such
a situation could happen with Similo since the "div" element has many locator
parameters in common with the target anchor that we are trying to locate. We
note that the "id" and "class" attributes share some similarities with the target
anchor in the older version. Also, the location, size, and shape are likely to be
very similar. It might be possible for the "div" element to get an even higher
similarity score than the anchor (in the newer version) and would therefore be
selected as the most similar candidate web element. By simply comparing the
Absolute XPaths, the "div" element would not be correctly located unless we
allow some tolerance in the comparison, as in our selected oracle. The tolerant
comparison method was used when comparing an XPath with the correct XPath
(the oracle) for all the single-locators, LML, and Similo.
1 <!-- YouTube logo in the older version of YouTube .com: -->
2 <a class ="masthead -logo - renderer yt -uix - sessionlink " id="logo - container "

title =" YouTube Home" href="/web /20190802000022... ">
3 <span title =" YouTube Home" class ="logo masthead -logo -renderer -logo yt -

sprite ">
4

6 <!-- YouTube logo in the newer version of YouTube .com: -->
7 <a class ="yt -simple - endpoint style - scope ytd -topbar -logo - renderer " id="

logo" title =" YouTube Home" href="/web /20201201235946 mp ...">
8 <div id="logo -icon - container " class ="yt -icon - container style - scope ytd -

topbar -logo - renderer ">
9 <svg class ="style - scope ytd -topbar -logo - renderer "... </ svg >

10 </div >
11

Listing 5.2: HTML extracted from the YouTube logo in the older and newer
version of YouTube.com.

5.5 Results
In this section we present the results of the experimental study we conducted
by answering the two research questions.

5.5.1 RQ1 - Robustness
Table 5.5 contains the number of located and non-located web elements for all
the single-locators, LML, and Similo. As can be seen from the Table, Similo

5.5 Results 125

Table 5.5: The total number of located and non-located web elements for all
websites.

Locator Located Non-Located Non-Located %
Absolute XPath 136 665 83
Relative ID-based XPath 326 475 59
Selenium IDE 394 407 51
Montoto 422 379 47
Robula+ 490 311 39
LML (theoretical limit) 587 214 27
Similo 710 91 11

failed to locate 11% of the web elements while the theoretical limit variant of
LML failed to locate 27% out of 801 target web elements.

Robula+ was the most robust of the single-locators (39% non-located), while
absolute XPath was the least robust (83% non-located). This result correlates
well with the results gathered in the experiment performed by Leotta et al. that
also concluded that Robula+ was the most robust single-locator and absolute
XPath the least robust. The only notable deviation between the studies was
that the Montoto locator was slightly more reliable (47% non-located) than
the Selenium IDE locator (51% non-located) in our experiment. In contrast,
the case was the opposite (i.e., Selenium IDE performed better) in the study
performed by Leotta et al. Detailed results per website can be found in the
replication package [10]. Similo performed better (more located web elements
than LML) for 32 of the websites, LML worked better in four cases, and there
was a tie when using the 12 remaining websites. LML was only able to locate
one additional web element for all the websites where LML performed better.

Manual Analysis of one Failing Case

To better understand why the Similo approach can, in some cases, fail to lo-
cate the correct web element, we studied a simplified example from the Aliex-
press.com website. Table 5.6 shows a comparison of the locator parameter values
for the target web element, the selected candidate, and the correct candidate
that we chose to use as an example. We decided to include four locator param-
eters (Tag, Visible Text, Absolute XPath, and ID-based XPath), compare all
the locator parameters using Levenshtein distance, and use the same weight for
all locator parameters. Note that we truncated the beginning of the Absolute

126
Similarity-based Web Element Localization for Robust Test

Automation

Table 5.6: Comparison of the locator values for the target, the selected candi-
date, and the correct candidate web elements. The locator values were extracted
from the Aliexpress.com website.

Web element Tag Visible Text XPath ID-based Xpath
Target A Home & Garden .../div[4]/div[1]/div[1]/div[2]/div[1]/div[2]/dl[7]/dt[1]/span[1]/a[1] .../div[1]/div[2]/div[1]/div[2]/dl[7]/dt[1]/span[1]/a[1]
Selected candidate A Home Improvement .../div[5]/div[1]/div[2]/div[1]/div[2]/div[1]/div[2]/dl[13]/dt[1]/span[1]/a[1] .../div[2]/div[1]/div[2]/div[1]/div[2]/dl[13]/dt[1]/span[1]/a[1]
Correct candidate A Home .../div[5]/div[1]/div[2]/div[1]/div[2]/div[1]/div[2]/dl[7]/dt[1]/span[1]/a[1] .../div[2]/div[1]/div[2]/div[1]/div[2]/dl[7]/dt[1]/span[1]/a[1]

Table 5.7: The similarity (between 0 and 100) when comparing the target with
the selected, and correct web element locator values.

Locator Selected cand. similarity Correct cand. similarity
Tag 1 1
Visible Text 0.43 0.30
XPath 0.89 0.91
ID-based XPath 0.89 0.91
Total similarity: 3.21 3.12

XPath and ID-based XPath values to save space in the Table since the leading
path was identical in all cases.

In the simplified example, Similo located the web element on the second row
in the table instead of the third row that is the correct one (according to the
oracle). When comparing the XPath, ID-based XPath, and Text values, we
note that none of the selected or correct candidates are identical to the target
web element. The only locator parameter value they all have in common is the
Tag name (the candidates are all anchors).

Table 5.7 presents the similarity when comparing the locator parameter val-
ues using Levenshtein distance with a weight of one. The Tag locator receives
the value 1 since all the values are identical. Both the XPath and ID-based
XPath values of the target locator parameters are slightly more similar to the
correct candidate (0.91 vs. 0.89). Still, the difference was not big enough to
compensate for the fact that the Levenshtein distance function evaluated that
the Visible Text ”Home & Garden” is more similar to ”Home Improvement”
than to ”Home” (0.43 vs. 0.30).

In summary, the candidate selected by Similo got a similarity score of 3.21,
while the correct candidate got only 3.12, resulting in an incorrect match.

To study how the distribution of similarity scores differs between candidate
web elements, we picked a random application (Ups.com, using a digital dice).
We extracted the calculated similarity scores between each target element and
all the candidates. Figure 5.7 contains a scatter plot of similarity scores when

5.5 Results 127

Figure 5.7: Similarity scores in a scatter plot containing all candidate web
elements and the correctly located one on the Ups.com website.

comparing the first of the correctly located targets with all of the candidates.
The scatter plot shows that the similarity score of the correctly located target
(7.6) is separated from the remaining similarity scores (less than 4.7). All the
correctly located targets follow the same pattern (clearly separated from the
rest) with one exception where two similarity scores were close but separated
from the remaining similarity scores. Next, we analyzed another target element
and picked the first of the incorrectly located targets, visualized in Figure 5.8.
In this case, the correct candidate web element (according to the human oracle)
only got the fifth highest similarity score. We note that the correct candidate
web element was not separated from the remaining candidates.

To summarize, for what concerns research question RQ1, we can say that,
for the considered applications, the adoption of Similo results in a significant
reduction (from 27% down to 11%) of the number of broken locators, which is
expected to be associated with a corresponding reduction of the maintenance
effort required to repair the test scripts using such broken locators.

128
Similarity-based Web Element Localization for Robust Test

Automation

Figure 5.8: Similarity scores in a scatter plot containing all candidate web
elements and the incorrectly located one on the Ups.com website.

5.5.2 RQ2 - Performance

Table 5.8 shows the average time to locate all the target web elements among the
candidates using Similo on ten websites (randomly selected from the 48 included
websites using a digital dice). The performance measurements were clocked on
a Windows machine with an AMD Ryzen 9 3900X processor equipped with
12 cores running 20 simultaneous threads (out of 24) at 3.79 GHz. In this
experiment, we used 20 threads only, leaving some threads available for other
tasks, e.g., our development environment and the operating system, to avoid
being interrupted. The "Locate all targets" column contains the total time (in
milliseconds) to locate all the targets among the available candidates. Time
per target is calculated by dividing "Locate all targets" by "Target count". We
calculated the average time to locate one target web element using Similo to
be four milliseconds on this machine (based on all the 48 included websites).
As we can see in Table 5.8, localizing a target web element typically take more
time when there are more candidate web elements. This result is natural since
the Similo approach (described in Section 5.3) compares the target with each
candidate to identify the best match resulting in a longer time to locate a target

5.6 Discussion 129

Table 5.8: The average time (in milliseconds) to locate a target among the
candidates on ten randomly selected websites.

Website Locate all (ms) Target count Cand. count Time/target (ms)
Apple.com 27 10 344 2.70
Netflix.com 12 3 157 4.00
Espn.com 110 23 1066 4.78
Amazon.com 53 10 1762 5.30
Fidelity.com 55 19 498 2.89
Paypal.com 62 23 192 2.70
Instagram.com 32 15 107 2.13
Reddit.com 225 30 1223 7.50
Usps.com 170 36 583 4.72
Twitter.com 57 20 68 2.85

when there are more candidates. Note that we have not included standard
deviations in Table 5.8 since the Similo calculation is performed in memory
isolated from other threads or network delays resulting in a predictable result
and, therefore, a negligible standard deviation.

To summarise, with respect to the research question RQ2 we can say that the
time required by Similo for selecting a web element is undoubtedly acceptable
(in the order of milliseconds).

5.6 Discussion
The result that the Similo approach is more robust than the baseline approach is
promising since it indicates that such novel approach can lower the maintenance
cost of web-based test automation by reducing the manual effort to repair broken
test automation scripts. The Similo approach can, for instance, be used as a
foundation to create tools and frameworks for web-based test automation that
can execute tests more reliably without sacrificing performance. With a more
robust automated test execution, the human testers could focus on other tasks,
e.g., test strategies or exploratory testing, instead of putting a lot of the effort
into script maintenance. Tools or frameworks that rely on Similo could also aid
the human tester by storing and automatically repairing all the web element
locators, thus reducing the manual labor when application changes occur.

The average time to locate one web element in the evaluated websites is
roughly four milliseconds using the Similo approach. This search time should
be compared to the time for performing GUI interactions, which for automated
GUI tests is typically measured in the order of hundreds of milliseconds or

130
Similarity-based Web Element Localization for Robust Test

Automation

even seconds. Also, for websites, network latency, etc., can be considerably
larger than on the order of milliseconds. As an example, Mahmud et al. [108]
report that in their study, automated tests are about six times faster to execute
compared to a manual tester but that it still takes about ten minutes to run
a test script with an average size of 45 test steps (13 seconds per test step in
average). Therefore, we do not believe the Similo approach’s performance will
be a limitation for either future academic research or industrial application.

However, no solution comes without drawbacks. In the case of the Similo
approach, see Section 5.3, one possible drawback is that it will always return
a matching web element as long as there are candidates unless a threshold is
used that rejects matches with a lower similarity score. Without a threshold,
the Similo approach will return a matching but incorrect web element even if
the target web element is not yet present or available on the webpage. This is
a typical case of the synchronization problem that can occur on websites due
to latency where parts of the webpage are loaded faster than other parts. The
consequence is that not all elements are available for localization, increasing the
chance of a faulty web element being matched with the target. Hence, using
the Similo approach, a test script could attempt to perform the next action in
a scenario on an incorrect web element instead of waiting for the correct target
web element to appear/load. This problem, to synchronize the test execution
with the webpage (or AUT), is also present for the LML approach and is a well-
known challenge present in GUI-based testing in general [33, 36, 37, 57, 66, 76,
90, 115]. A possible solution to this challenge is to use a threshold, representing
the lowest acceptable similarity score a target web element must have. For
example, suppose that the threshold is not achieved with the current candidate
web elements when expected to include a correct match. In this case, we can
draw the likely conclusion that not all web elements have been loaded, triggering
a rerun of the localization. If the rerun fails and the threshold still not obtained,
we can continue to rerun the search or conclude that no matching elements are
available, e.g., due to website failure. However, this solution presents some
additional questions, for instance, how many times should the approach search
and how much time should it wait between searches? We cover optimization of
weights and other possible enhancements in Section 4.7.

Regardless, defining a suitable value for the threshold is non-trivial. If the
threshold is set too high, that might eliminate valid matches, and if it is set too
low, incorrect matches may be chosen due to the aforementioned synchroniza-
tion challenge. The challenge is present during test execution of scripted test
sequences, where dynamic waits are appropriate to minimize total test execution
time, and therefore a common challenge that warrants more research.

5.6 Discussion 131

Despite not resolving all challenges of effectiveness and efficiency, we claim
that Similo shows great potential for improving web-based testing in industrial
practice. The approach is currently implemented in Java and can, with minimal
effort, be integrated into existing Java-based Selenium test suites. A possible
solution would be to create a plugin that uses Similo to locate a Selenium
WebElement given a set of locator parameters. Furthermore, the approach is
agnostic to the AUT’s programming language and implementation details, as
long as there is an available GUI structure (e.g., the Android SDK or the Win-
dows accessibility framework). While evaluating Similo on mobile and desktop
applications would be interesting for future work, this research focused only on
evaluating the effectiveness and efficiency of Similo on websites.

Similo can be used to improve the robustness of test execution (of web-
sites) by making it tolerable to minor changes to the web elements and thereby
mitigating locator maintenance costs. However, this additional robustness also
presents an interesting but very relevant challenge. By increasing the robust-
ness of the localization, the test scripts can identify web elements that have
been, to some extent, or even significantly, modified. This tolerance helps the
scripts carry out their purpose of testing the application on a scenario-level of
abstraction. However, at the same time, this makes the scripts less sensitive to
unintentional or faulty changes to the web elements that could, as an example,
cause erroneous behaviors when the AUT is fully integrated with other appli-
cations or services. Hence, while Similo provides more robust scenario-based
test execution, from a human perspective, it lowers the script’s capabilities of
finding technical issues such as incorrect tags, IDs, etc. However, this trade-off
is considered acceptable since the purpose of most scenario-based GUI tests is
to test the user scenarios and not the correctness of the GUIs architecture/im-
plementation.

In summary, Similo utilizes the triangulation of multiple locator information
to identify correct web elements. The approach is shown to be more effective
at finding elements than the baseline solution and efficient enough for practical
use. The approach thereby advances baseline but does not fully solve the prob-
lem of perfect element localization. Further research is warranted in the area,
which should also investigate what locator parameters to use, how to weight
locators, set suitable threshold values to evaluate if the approach can mitigate
the synchronization challenge.

132
Similarity-based Web Element Localization for Robust Test

Automation

5.7 Threats to Validity
Selecting the target web elements to locate in our experiment, i.e., establishing
the "ground truth" for our experiments, is a threat to the internal validity. We
tried to minimize this threat by selecting all the web elements present on both
versions of the website homepage that belonged to specified categories of web
elements. However, some of the websites were redesigned or had almost nothing
in common with the older version, resulting in few web elements in common
between versions. We decided to include redesigned websites or websites con-
taining few web elements since that occurred in public websites and is a realistic
scenario. The choice of locator parameters included in our study is also a pos-
sible threat since we used 14 locator parameters with the Similo approach and
only five localization algorithms with LML. We, however, consider this to be a
realistic scenario since Similo supports a wide range of locator parameters while
LML only works with locators that can identify unique matches. To reduce
this threat to the internal validity, for LML, we decided to use the same selec-
tion of locators in our experiment as well as adopted in the paper [99] and in
consultation with the original LML authors (also authors of this work).

The applications and versions selected for the study might also pose a threat
to external validity. We decided to pick the top 48 sites from Alexa.com to
reduce this threat since we have no control over the websites listed on that site.
The website versions selected affect the number of failed localization attempts
since a long time between two releases is likely to contain more changes. We
reduced this threat by selecting the same interval (one to five years) between
website versions as Leotta et al. [99] and picking a random number for each
website that specifies the time in months between versions.

That we only selected web elements from the homepage (the start page) of
each of the websites can also pose a threat since the homepage might not contain
the same distribution of web elements as the entire website. To reduce this
threat, we extracted and counted all the web element tags in all the homepages
to check if any of the most commonly used tags were missing in our sample of
homepages. We concluded that only one of the tags was unrepresented and that
this was considered reasonable.

The choice of web element types to extract from the homepages could pose
a threat to the validity of our study. Similo, and the LML approaches are,
however, agnostic to web element types. For the approaches, the tag name and
the attributes of a web element are just a collection of parameters that should
be compared. Therefore, we argue that this design choice has a minor impact
only on this study’s external validity.

5.8 Related Work 133

Since the similarity score is highly dependent on the weights chosen for the
comparison, illustrated in Figure 5.4, they also affect the results. We decided
to compare Similo against the theoretical limit variant of the LML approach
and used only two different weight values (0.5 and 1.5) to mitigate this threat,
even if we might have got an even better result by comparing with the weighted
variant of LML and optimized the weights for Similo. Therefore, we perceive
that the experiment was conducted non-optimally (from the Similo perspective)
and, therefore, the results obtained are underestimations. This conclusion is
logical as previous work on weight optimization has provided better results
with optimized weights [86]. This actually highlights the high effectiveness and
potential of the Similo approach.

5.8 Related Work
Although there are no established proposals, the problem of maintaining and
evolving test scripts is well considered in both industry and academia. In prac-
tice, two categories of approaches, opposite but not mutually exclusive, exist:
approaches that apply post-repair techniques when a locator fails to select the
correct locator and others, more preventive, aiming to generate robust locators.

5.8.1 Automatic repair of broken locators
A category of approaches that shares the same goal of Similo, i.e., reducing the
overall test suite maintenance effort, is the one based on automatic repair of test
scripts and in particular of broken locators. This category has been investigated
by various researchers (e.g., [49, 75, 86] and the contained approaches are often
based on algorithms similar to those used to generate robust locators.

In this category we found WATER, proposed by Choudhary et al. [49], a
tool-based approach able to repair web application test scripts. The authors of
this paper claimed that test scripts mainly break for three reasons: structural
changes (i.e., related to the DOM tree), content changes (i.e., attribute or web
page changes), and blind changes (related to server-side changes). The approach
is based on the concept of differential testing, i.e., comparing the execution of
the test scripts on two different releases: one where test cases fail and one where
they pass. Even though WATER is designed for script repair, the underlying
algorithm contains an algorithm used to locate the most similar web element
based on weighted locator parameters. Differently from us, the algorithm only
considers six locator parameters (XPath, coord, clickable, visible, index, and

134
Similarity-based Web Element Localization for Robust Test

Automation

hash), where XPath’s are compared using Levenshtein distance [8] and the rest
of the locator parameters are considered correct only if their values are (exactly)
equal. The similarity check is used when selecting the best web element among
elements identified using id, XPath, class, linkText, or name when there is more
than one candidate.

Another representative of this category is WATERFALL [75], built starting
from WATER, but which improves its idea and effectiveness. The algorithm
implemented in WATERFALL is based, similarly to WATER, on differential
testing, and uses exactly the same heuristics to executes the repairs. However,
it does take into account the intermediate minor versions occurring between
two major releases of a web application. This modification to the original idea
has improved its effectiveness, as shown by the experiments conducted (209%
improvement of the number of correct repairs being suggested).

Recently, a novel tool, named COLOR, for repairing broken locators have
been proposed by Kirinuki et al. [86]. The approach considers various proper-
ties such as attributes, positions, texts, and images to propose a repair. From
an experiment conducted by the authors it can be seen that COLOR is more
effective w.r.t. complex changes (e.g., page layout changes) than WATER, the
state of the art tool in this context. Results shows that COLOR ranks the
correct locator with a 77% - 93% accuracy.

Erratum is the name of another recent approach proposed by Brisset et al.
[42] that utilizes a DOM tree matching algorithm to repair broken locators in
a website. Their results indicate that Erratum has a 67% better accuracy of
locator repair than WATER.

GUI DifferEntiator (GUIDE) is a non-intrusive, platform-, and language-
independent tool proposed by Grechanik et al. [70, 163] that can identify
changes in the GUI trees of two successive releases of a web application. Testers
can use the tool to identify DOM changes to provide guidance or estimates for
test planning and repair.

As already mentioned Similo does not belong to this category of approaches
that carry out the repair of locators but approaches the same problem in a
preventive way.

5.8.2 Generation of robust locators
The problem of generating robust locators is considered mainly in the context
of information retrieval and data mining, for extracting information from semi-
structured sources (e.g, XML and HTML pages). However, the same problem is
also relevant in the context of automated browsing of web applications and in the

5.8 Related Work 135

context of automated E2E testing for web application. In this section, we limit
ourselves to this last context but the previous ones are also very important and
often the techniques proposed in the testing field have been produced starting
from the first ones.

Several algorithms for generating robust locators (we will call it single-locator
generation algorithms to differentiate it from the concept of multi-locator) have
been proposed in the literature.

Among these algorithms we find that of Montoto et al. [117]. This algorithm
generates XPath change-resilient expressions iteratively, following a bottom-
up strategy. It starts from a simple XPath expression and then extend it by
concatenating sub-expressions until a target element is identified. First, the
algorithm tries to identify the target element using text and the value of its
attributes. Then, if the generated XPath is not a unique locator, its ancestors
and the value of their attributes are considered one after the other until the root
is reached.

Other algorithms for generating robust XPath’s are ROBULA [98] and ROB-
ULA+ [100], proposed by Leotta et al. The ROBULA+ algorithm [100] (ROB-
ULA was its antecedent) is considered the state of the art algorithm for automat-
ically generating robust XPath expressions. The intuition behind ROBULA+
is simple and effective: to combine XPath properties using ad-hoc heuristics in
order to maintain the locators as short as possible and so robust. The algo-
rithm, similarly to the one proposed by Montoto et al., produces the locators
iteratively starting from the most generic XPath locator that selects all nodes
in the DOM tree (//*). Subsequently, it refines the generated XPath expres-
sion until only the element of interest is selected. In such iterative refinement,
ROBULA+ applies a set of transformations, according to a set of specialisation
steps, prioritisation and black listing techniques.

Another approach for increasing the robustness of a locator is to not only
consider the attributes of the target web element, but also its neighboring web
elements, as proposed by Yandrapally et al. [166]. Using neighbour information,
a web element can be partly or entirely located based on the attributes of the
neighboring web element through an approach similar to triangulation. As an
example, assume that the web page contains a text field with a label above it.
In this case, the text field can still be located even if it is replaced, given that
the label above it can still be identified. The work by Yandrapally et al. is a
suggested enhancement (called ATA-QV) to the technique and tool proposed
by Thummalapenta et al. [151], simply called ATA. ATA is a commercial tool
developed at IBM that aims to improve the robustness of locating web elements
compared to using absolute XPath’s by associating web elements with neigh-

136
Similarity-based Web Element Localization for Robust Test

Automation

boring labels. The idea underlying the tool is that robustness of locator can be
pursued by relying more on labels (i.e., the visual landmarks) and less on page
structure. When there is more than one web element with the same label, ATA
uses an XPath complemented with additional attributes, such as index or class,
and can, in many cases, relocate web elements even when they moved in the
subsequent version or their attributes changed.

These last two approaches (ATA and ATA-QV) are promising for generating
robust locators because they take advantage of multiple aspects of the repre-
sentation of the application under test and eliminate almost entirely the usage
of the web page structure. Although ATA is a promising approach, differently
from Similo, it uses only one locator parameter (a text label) that will only
result in a match when there is one unique label on the web page and when the
label names match exactly. This drawback can be reduced by using contextual
clues, as proposed by Yandrapally et al., making the localization more tolerant
to changes since it might be possible to locate the web element based on the
labels in surrounding web elements.

Recently, some commercial state-of-art testing tools — such as e.g., Testim3

and Ranorex4 — apply and use locators generation algorithms based on Artifi-
cial Intelligence (AI) to improve robustness. This seems to be the new frontier
in the context of E2E testing of Web applications and the results are promising,
as evidenced also by some recently proposed academic papers (SIDEREAL tool
[96] and the algorithm proposed by Nguyen et al. [128]). SIDEREAL [96] is
a statistical adaptive algorithm able to learn the potential fragility of HTML
properties from previous versions of the application under test and thus pro-
ducing robust locators specific to a given web application. SIDEREAL, based
on the property of adaptivity that distinguishes it, outperforms ROBULA+’s
heuristics in terms of robustness. The other recent generation algorithm has
been proposed by Nguyen et al. [128] and is based on a combination of two
methods: a new XPath construction method and a rule-based selection method
of the ’best XPath’ for a target element. The former method uses the seman-
tic structure of a Web page as starting point to build neighbor-based XPaths.
Similarly to ATA, it also relies on textual presentation that is visible to users.

Similo is inspired by these related works, combining several technical solu-
tions to improve locator robustness. In common with the LML approach, Similo
tries to take advantage of multiple sources of information instead of just one as
single-locator algorithms. Unique to the Similo approach is that it collects loca-

3https://www.testim.io/blog/why-testim/
4https://www.ranorex.com/blog/machine-trained-algorithm/

5.9 Conclusions and Future Work 137

tor parameters from all visible web elements on a web page before making any
comparisons. This information allows neighboring web element information to
be used similarly to the the approach proposed by Yandrapally et al. Addition-
ally, our approach allows all locator parameters to be compared, weighted, and
tallied into a combined similarity score for each web element compared against
all candidate web elements to find the best suitable match. Our approach also
enables using a threshold value to filter how similar candidate web elements
have to be considered a match. In contrast, for instance, the LML approach
returns a set of candidate web elements that could all match the target web
element. However, since the LML approach does not provide any additional
information (other than the locator weight), it’s more challenging to determine
which of the candidates is the most probable match.

5.9 Conclusions and Future Work
Test script fragility, caused by unreliable localization of web elements, is one
of the dominant challenges in GUI test automation [141]. We propose a novel
approach, Similo, that identifies the web element, from a set of candidate web
elements, with the highest similarity to the locator parameters of the target web
element. We compared the robustness and performance of Similo against the
baseline approach, identified in the multi-locator presented by Leotta et. [99].
Experimental results show that Similo only failed to correctly locate 91 out of
a set of 801 web elements, while the baseline approach was unable to locate
214 of the web elements from the same set. The time needed to locate one web
element was roughly 4 ms for Similo and should not be a major performance
problem when executing GUI-based test scripts since the time to perform a test
case is typically measured in the order of seconds.

A benefit of the Similo approach is that we can use any locator parameters
regardless of the locator is able to uniquely identify a web element or not. We
used fourteen locator parameters in this experiment, but we might have got an
even better result with a more extensive set of locator parameters. However,
more research is needed to identify the locator parameters that give the best
contribution to the robustness.

The locator parameters, comparison operators, and weights (here referred
to as properties) selected for the empirical study are all merely initial selections
and values. We emphasize that we do not claim the properties to be optimal for
any website. While the experiment shows that the properties selected resulted
in less failed localization attempts, that does not mean that we cannot find an

138
Similarity-based Web Element Localization for Robust Test

Automation

even better set of properties. A more optimized set of properties would perhaps
result in fewer failed localization attempts and a higher margin between the best
matching web element and the second best, making the Similo approach even
more robust. In future research, we aim to optimize the properties used in this
study to improve the Similo approach results. This research includes looking at
the possibility of dynamically adjusted weights and comparison methods using
feedback-based optimization. Such techniques are considered suitable since the
optimization of this problem is perceived to be context-dependent, i.e., the best
combination of properties may be unique to each application.

In this paper, we have deliberately ignored the problem that it takes some
time to transition from one application state to another after performing an
action (e.g., a mouse click). The test execution needs to wait for the next appli-
cation state to avoid the potential risk of fetching the candidate web elements
before they are all available. Failing to fetch the complete set of candidate web
elements might cause a script that relies on the Similo approach to fail if the
correct web element is not present among the candidate web elements.

In conclusion, Similo, inspired by previous works, has been shown in this
study to provide more robust web element localization with perceived suitable
execution time to make the solution applicable in practice. Additionally, several
possible improvements to the approach are discussed, and we outline future
research based on these ideas. Hence, future research is warranted in this area
to continue to address the fundamental challenges with GUI testing regarding
robust web element localization and synchronization. In this study, the focus has
been on websites only. Still, we see no reason why Similo cannot be used on any
application with a GUI (e.g., desktop or mobile apps), not just websites, where
locator parameters can be extracted from GUI widgets and used for localization.

5.10 Acknowledgements
This work was supported by the KKS foundation through the S.E.R.T. Research
Profile project at Blekinge Institute of Technology. Robert Feldt has also been
supported by the Swedish Scientific Council (No. 2015-04913, ’Basing Software
Testing on Information Theory’ and No. 2020-05272, ’Automated boundary
testing for QUality of AI/ML modelS’).

We want to sincerely thank Rahul Krishna Yandrapally and Saurabh Sinha,
two of the authors of the ATA-QV paper [166], who went to considerable lengths
to support us in trying to re-implement their approach.

Chapter 6

Robust Web Element
Identification for Evolving
Applications by Considering
Visual Overlaps

Abstract
testFragile (i.e., non-robust) test execution is a common challenge for auto-
mated GUI-based testing of web applications as they evolve. Despite recent
progress, there is still room for improvement since test execution failures caused
by technical limitations result in unnecessary maintenance costs that limit its
effectiveness and efficiency. One of the most reported technical challenges for
web-based tests concerns how to reliably locate a web element used by a test
script.

This paper proposes the novel concept of Visually Overlapping Nodes (VON)
that reduces fragility by utilizing the phenomenon that visual web elements (ob-
served by the user) are constructed from multiple web-elements in the Document
Object Model (DOM) that overlaps visually.

We demonstrate the approach in a tool, VON Similo, which extends the
state-of-the-art multi-locator approach (Similo) that is also used as the baseline
for an experiment. In the experiment, a ground truth set of 1163 manually

140
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

collected web element pairs, from different releases of the 40 most popular web
applications on the internet, are used to compare the approaches’ precision,
recall, and accuracy.

Our results show that VON Similo provides 94.7% accuracy in identifying a
web element in a new release of the same SUT. In comparison, Similo provides
83.8% accuracy.

These results demonstrate the applicability of the visually overlapping nodes
concept/tool for web element localization in evolving web applications and con-
tribute a novel way of thinking about web element localization in future research
on GUI-based testing.

Keywords: component, formatting, style, styling, insert

6.1 Introduction
In modern software engineering, test automation is a key activity, where auto-
mated tests are used to continuously monitor the software’s quality and provide
frequent feedback to developers [108]. However, much of this automation has
been restricted to lower-level testing such as unit and integration tests [131].
Higher level testing, particularly with graphical user interface (GUI) tests, are
still mostly manual and therefore a costly activity in practice [71, 73].

While GUI tests can be used to verify the correctness of the GUI’s appear-
ance, the focus of many GUI tests is on verifying functional correctness of the
system under test (SUT) [30], i.e. system testing through the SUT’s GUI [39].
However, despite continued research since the 1980s, several key challenges re-
main and limit the widespread adoption of automated GUI testing [121]. One
of these challenges is the robust identification of GUI elements. This issue has
been described for many domains, and several approaches have been proposed to
increase the robustness of GUI element localization [98, 100, 117, 166]. Robust-
ness is, in this instance, defined as the correct identification of a web element
when it is available and reporting no match when a web element is unavailable.
This property is particularly important as automated web application tests are
typically used for regression testing as software systems, and their GUI elements,
change and evolve [61].

Despite its importance, research has had marginal success in solving the
challenge of robust GUI element localization [121]. Instead, much research has
been focused on extending GUI testing technologies, only utilizing the already
available web element localization solutions—example of such extensions are
test generation and GUI ripping [127, 154]. Some research, however, has been

6.1 Introduction 141

made investigating new types of locators, e.g., image recognition [168], or multi-
locators [100]. However, we still consider web element localization an unsolved
challenge [121], warranting more research to improve the general robustness and
maintainability of available GUI testing techniques and tools.

Nass et al. proposed an approach called similarity-based web element local-
ization (Similo) [122], which calculates a weighted similarity score between the
target web element in a previous version, and all web elements (candidates),
in a revised version, of a web application. The target web element contains
the desired properties (e.g., attributes) that are compared with each candidate.
They compared the Similo approach with the multi-locator approach proposed
by Leotta et al. [99] and found that Similo can correctly locate more target web
elements than the multi-locator when evaluating web elements extracted from
40 commonly used homepages.

This study presents the novel concept of Visually Overlapping Nodes (VON).
The concept makes use of the structure of how modern web applications are con-
structed (i.e., as hierarchies of components with specific attributes and charac-
teristics) and how this structure is formalized in the document object model
(DOM) [160]. Our investigations show that multiple DOM nodes often point to
the same visual element in the rendered GUI, implying that any of these nodes,
if found to be a match to the sought visual element, will constitute a valid match
if used for a graphic validation of the SUT. DOM nodes (typically arranged in
a hierarchy) that represent the same visual element (e.g., a button or menu
item) are, in this paper, referred to as visually overlapping nodes (VON). As an
example, a menu item that is represented by an anchor tag (<a>) containing
two span tags () in the DOM. All three DOM nodes visually appear as
the same element (as observed by the user) even though they are three separate
nodes. The benefit of this approach is that it increases the chance to find at
least one good match for a provided target, thus leading to more robust web
element identification.

While many other essential activities need to be in place for robust GUI-
based test automation, we here focus on the vital aspect of GUI web element
identification. If the identification is not robust, later steps of the chain cannot
compensate for this. This focus is visualized in Figure 6.1.

As such, the main contributions of this work are:

• Insights into the relative power of different web element attributes for web
element localization;

• A generally applicable, yet novel, concept called Visually Overlapping
Nodes (VON);

142
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Figure 6.1: Graphical representation of the GUI test case execution process,
highlighting the step (web element identification) that is studied in this work.

• An improved version of similarity-based web element localization (Similo)
that implements VON (VON Similo).

The continuation of this paper is structured as follows. First, in Section 6.2,
we present related work and give more detailed descriptions of the technologies
evaluated in this study. Section 6.4 then explains the study’s experimental
setup. We present the results in Section 6.5.1, which describes the findings of
our experiment. These findings are discussed in Section 6.6 before the paper is
concluded in Section 6.7.

6.2 Background and Related Work
In the GUI-based web application testing discipline, a web-element locator is
defined as a method, function, approach or algorithm that can locate a web
element in a given web page according to a specific parameter. State-of-the-art
techniques and tools typically make use of conditions on the attributes of the
web elements in the HTML DOM tree (e.g., ids, attributes, or class names).
Popular testing tools (e.g., Selenium) provide the possibility to use XPath or
CSS expressions to locate elements on the web page [44]. We refer to these types
of locators as single-locators.

Single-locators are a reported source of fragility for test suites. Fragility is
defined as the lack of robustness of the locators to changes in the GUI definition
of the SUT. Test script fragility typically manifests through test cases that fail
not because of functional misbehaviors in the SUT but because of the inability
of the testing engine to find the web elements needed during the test sequences

6.2 Background and Related Work 143

using existing locators [53]. When a locator cannot be found in the DOM tree
of the current web page, it is typically referred to as a Broken locator [99].

Given the increased complexity and high pace of change of modern web
applications, it is highly likely that the attributes or the XPaths of web elements
are modified between two versions of the same web application. If single-locators
are used, any such change would result in failed localization attempts and require
additional effort by the testers to repair the broken test suites.

Leotta et al. proposed the multi-locator approach [99] to limit the fragility
of single-locators in web application testing. The approach evaluates multiple
locators and uses a voting procedure between the single-locators to improve the
accuracy of locating the correct web element in a web-page, thereby improving
the robustness and reducing the script maintenance cost.

Similo is another approach of multi-locators based on a weighted similarity
score computed on the differences between the locator parameters of the web
element to locate and each of the web elements on the current web page [122].
Unlike the multi-locator approach proposed by Leotta et al. [99], which uses
five single-locators that uniquely identify precisely one (or none) web element
each, Similo combine comparisons on multiple attributes in a single score. Such
score can then be used to rank the possible candidate widgets for the current
target, thereby finding multiple possible alternatives instead of a single result
as Leotta’s multilocator. The algorithm can then select as valid matches all
the candidates for which the score is above a given threshold, or select the
highest-rated candidate as the single match for the target.

Similo can take advantage of locators that pinpoint more than one web
element. For example, Similo can use an absolute XPath that pinpoints exactly
one web element in the DOM, but unlike the multi-locator proposed by Leotta
et al., Similo can also use the CSS selector ".name" to find all web elements that
contain a specific class name even if the query results in several matching web
elements.

In the Similo study [122], currently available as a preprint at arXiv, the
authors used 14 different locator parameters with corresponding comparison
operators and weights summarized in Figure 6.2. The locator parameters Tag,
Class, Name, Id, HRef, Alt, XPath and ID relative XPath, Location, Visible
Text are collected directly from the DOM-tree. IsButton is a derivate boolean
parameter, that was set to true or false according to the values of the attributes
Tag, Type, and Class. Neighbor Texts contain a space-separated text of words
collected from the visible text of nearby web elements. Specific comparison
operators that return a value between zero and one (or exactly zero or one) were
selected for each locator parameter. Some locator parameters were compared

144
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Figure 6.2: Graphical representation of the computation of similarity score be-
tween two different sets of locator parameters.

by the Java method equalsIgnoreCase (e.g., Tag, Name, and Id). Others were
compared using Levenshtein distance, word comparison, or Euclidean distance.
Detailed information about the comparison operators can be found in the Similo
paper [122].

The weights for each locator parameter (and comparison operator) were
assigned based on their respective stability and uniqueness found by the COLOR
study by Kirinuki at al. that used a similar selection of locator parameters
when evaluating four open-source web applications [86]. The COLOR approach
considers various properties such as attributes, positions, texts, and images to
propose a repair unlike Similo that approaches the same problem in a preventive
way (i.e., before the script failure occurs). In Similo, the locator parameters were
divided into two groups based on the corresponding weights from the COLOR
study. Locator parameters with a higher stability and uniqueness were assigned
the weight value 1.5 (bold lines in Figure 6.2) and the remaining were assigned
the value 0.5 (thin lines in the graphical representation).

6.3 Visually overlapping nodes approach
In this section, we propose an approach to enhance the current state of the art in
multi-locators for web application testing with an improved version of similarity-

6.3 Visually overlapping nodes approach 145

Figure 6.3: A visualization of a hierarchy of web elements represented both
visually and from a DOM perspective. It shows that although W2 and W3
are unique entities, they appear to be the same visual component or, at least,
overlap visually.

based web element localization (Similo) that implements visually overlapping
nodes (VON Similo).

A characteristic of modern web applications is that they are built from ele-
ments that contain other elements, e.g., a text label can be contained in a button
that is itself contained in a div tag, which in turn may be placed in another con-
tainer, such as a frame. This hierarchical structure is modeled within the DOM,
which is used by web browsers and GUI testing tools to render, identify or in-
teract with elements. From a DOM perspective, each element is considered a
unique entity, as it is described by a DOM node identifiable through a unique
absolute XPath. However, from a visual perspective, multiple nodes — due
to size, placement, and content — represent the same visual element, e.g., a
button. This feature of modern web applications thereby implies the existence
of a many-to-one connection between DOM nodes and visual elements. In this
paper, all the DOM nodes that belong to the same visual element are referred
to as visually overlapping nodes (VON).

Fig. 6.3 visualizes this many-to-one correspondence, showing how web ele-
ments can be contained in other web elements yet, from a visual perspective,
occupy the same area of the screen. In this case, while web elements W2 and
W3 are represented with different XPaths in the DOM, both visually point to
the same (or nearby) screen area or web element. This phenomenon implies
that both web elements (W2 and W3) are equally correct candidate elements

146
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

(i.e., elements available on the current web page) for a target element (i.e., the
element that contains the properties that we are looking for) pointing to that
screen area. We refer to this phenomenon as visually overlapping nodes (VON),
where property-based localization approaches, like Similo, can utilize VON to
increase the number of correctly located candidate web elements. Hence, rather
than relying on finding one specific DOM node, or absolute XPath, any located
DOM node that belongs to the same visual element is deemed a correct match.
This approach mitigates test execution fragility by, as mentioned, increasing the
number of candidate DOM nodes that can be matched when identifying one and
the same web element. Essentially, the approach will be more robust as long as
only one or a subset of these nodes change between two revisions.

Formally, we define the approach to identify equivalent web elements as:
Given a web element W1, we define the set of equivalent web elements e0,

. . . eN as the set of web elements that satisfy the following properties:

1. The ratio between the overlapping areas of the web elements on the screen,
and the union of the areas of the two web elements, is higher than a set
threshold value. Such ratio is computed as,

∩(R1, R2)
∪(R1, R2)

where: R1 and R2 are the rectangles occupied on the screen by the two
web elements; the set intersection symbol indicates the size (in pixels) of
the common area occupied on screen by R1 and R2, and the set union
symbol indicates the size (in pixels) of the union of R1 and R2.
By experimenting with different threshold values to identify visually over-
lapping nodes, we finally selected 0.85 as a value for the threshold that al-
lowed us to avoid a definition of visual overlap that was too loose (thereby
considering visually separate GUI elements as overlapping) or too strict
(thereby finding none or a few visually overlapping nodes).

2. The center of the web element W1 is contained in the rectangle R1.

The addition of the VON concept transforms the locator parameters (e.g.,
tag. id, or xpath) that are stored and utilized by the Similo algorithm. Each
locator parameter value is no longer a single value but is instead substituted
by a list of equivalent values collected from all the visually overlapping web
elements of a DOM node.

6.3 Visually overlapping nodes approach 147

Figure 6.4: Visualization of how visually overlapping nodes are implemented in
VON Similo.

The VON Similo score substitutes the comparison functions of the original
Similo, with the following function:

Given the set ew1 (set of web elements equivalent to w1: e1.1, e1.2, ... e1.N)
and ew2 (set of web elements equivalent to w2: e2.1, e2.2, ... e2:M), and the values
for a specific attribute of the equivalent web elements, VON Similo computes
the similarity between all the possible combinations of visually overlapping web
elements for a specific attribute. The maximum of these similarity values is the
VON Similo similarity score for that attribute in the comparison, representing
the best possible match to the target web element. However, while the match
may not be the target web element, this approach ensures that the coordinates of
the match overlap with the intended target. As such, from a visual perspective,
the target element is identified.

Figure 6.4 presents a visualization of the process of how visually overlapping
nodes are utilized in VON Similo. In the first step, denoted A in the figure, a set
of target web elements (denoted Tx∈TS) and candidate web elements (denoted
Cy∈CS) are available, where |TS| ≤ |CS|. In the second step, denoted B in

148
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

the figure, a pre-analysis of TS and CS is performed, clustering all target and
candidate web elements according to the visual web elements they are associated
with, using the formula presented previously in this section. The outcome of
the pre-analysis are clusters TS1-TSi and CS1-CSj containing components with
overlapping target areas on the screen but otherwise with an unknown overlap
in terms of locator properties. In step 3, denoted C in the figure, each target
web element Tx∈ TSi is compared to every other candidate web element Cy∈
CSj , and a similarity score is calculated. After the comparison, the maximum
similarity score of each cluster is kept and associated with all target web elements
Tn-Tm∈TSi, resulting in a mapping between Ti and Cj as visualized in the
last step of the figure, denoted D. This mapping implies that (from a DOM
perspective) a given target web element Ti may not be mapped to the candidate
component Ci=Ti that was initially used when the target was set in the previous
version of the SUT. In Figure 6.4, T1 is equivalent to C9 but is mapped to its
parent component C6. However, from a visual perspective, this is irrelevant
since both C6 and C9 point to a visual area that is overlapping with the one
containing T1.

The benefits of this approach is that the number of valid matching candi-
dates increases, implying that for clusters where a target web element can not
be mapped to a suitable candidate, a candidate can still be associated. This
increases test robustness by reducing the number of failed test actions caused by
minor changes to components that would otherwise be considered false positive
test results. One could argue that this approach would increase the number of
false positives, or false negatives, by mapping targets to incorrect candidates.
However, as we will show, no such trends were identified.

6.4 Empirical Evaluation

In this section, we report the goal, the research questions, the methodology,
and the results of the empirical evaluation we performed when comparing VON
Similo to the baseline. Similo was selected as the baseline since a previous study
[122] (currently only available as a preprint) showed that it was able to locate
more web elements when compared to the multi-locator approach proposed by
Leotta et al. [99].

6.4 Empirical Evaluation 149

6.4.1 Goal
The study’s high-level goal is to evaluate the efficiency of VON-based web el-
ement locators when applied to web applications. The results are interpreted
from the perspective of software testing procedures needing methods to auto-
matically locate web elements in evolving GUIs with high levels of accuracy.

To perform a comparison with the state-of-the-art, we performed an analysis
of the accuracy and effectiveness for the base Similo algorithm, that was not
performed in the original paper. We also complement the original study with
an analysis of the aptness of DOM attributes for widget localization.

6.4.2 Research Questions and Metrics
• RQ1: Which are the most frequently used element attributes in web

applications?

• RQ2: What is the effectiveness of similarity-based web element localiza-
tion (Similo)?

• RQ3: What is the effectiveness of VON-based web element localization
(VON Similo)?

• RQ4: Which type of multi-locator (Similo or VON Similo) performs bet-
ter in terms of accuracy?

The objective of RQ1 is to corroborate the selection of an optimal set of
attributes for the multi-locator approach employed in Similo (attributes shown
in Figure 6.2). We chose these attributes based on related literature. Still,
it is unknown how often the attributes are populated with data on a generic
web page and, thereby, what value they give to the employed calculation of
similarity. It is further unknown if any attribute, which could provide value,
is not part of this set. To answer RQ1, we compute two different metrics: the
Relative Non-null values for each attribute and the Variability of each attribute.

The objective of RQ2 is to extend and complement the original study per-
formed on Similo [122]. Our purpose is to compute Accuracy, Precision, and
Recall for the original similarity-based web element localization approach, to
serve as a baseline for our further evaluations. Real-world web applications are
used, where we can observe minor and significant changes to the site’s appear-
ance and functionality. The standard Accuracy, Precision, and Recall measures
are calculated based on the use of a human oracle by mapping target web ele-
ments from the old version of the web application to the new web application.

150
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

The objective of RQ3 is to evaluate the accuracy with which VON Similo
can locate the correct web element (from a visual perspective), given a target
web element, on a new release of the same web application. To answer RQ3,
we resort again to measuring three standard measures, Accuracy, Precision, and
Recall.

Finally, the objective of RQ4, as a side-objective of the measurement of the
Accuracy, Precision, and Recall provided by both types of locators, is to provide
a comparison between them.

6.4.3 Methodology
This section presents the steps we took to evaluate the research questions in a
controlled experiment.

A replication package is available as an open-source repository 1.
We will present threats to the validity of the study design in Section 6.6.1.

1. Application Collection: To gather a set of experimental subjects for our
evaluations, we collected pairs of versions of the same webpage inside the
same web application. The objective was to emulate the maintenance of
web application by using target web elements from an old site version and
identifying them on a new version.
To avoid biased selections, we selected the 40 top-rated web application
in the United States from the Alexa ranking web application23. Since the
list contained one case of mirrored sites (different URLs leading to the
same web application), we used only one of them. We also excluded one
web application with adult content due to ethical reasons. The final list
of 38 web applications can be found in the replication package.

2. Application Version Selection: The Internet Archive web application was
used4, to acquire the old version of the web application chosen in the
previous step. To further reduce potential biases, we choose to replicate
a design employed by Leotta et al., selecting as the newer version (v2)
of each web application a version published in December 2020 and as the
older version (v1) a version dated R months backward in time (with R

1https://figshare.com/s/e63c3679e925730397ac
2http://www.alexa.com
3Since the experiment, the web application (i.e., alexa.com) has been discontinued and is

no longer publicly available.
4http://web.archive.org

6.4 Empirical Evaluation 151

randomly varying between 12 and 60 months, 36 months on average). This
choice ensured enough time had elapsed between releases to see graphical
and functional differences between the two versions of the web application,
enabling us to evaluate the web element finding ability of the approach over
time for both minor and significant changes. We perceive minor changes
to have higher construct validity for regular operations in practice. Still,
we do not want to exclude more significant changes, which can occur when
companies re-brand or make more extensive technological updates to their
web applications.

3. Application scraping: We developed a Selenium-based web scraper to an-
alyze the distribution of the most commonly used web elements and at-
tributes and their distribution among web applications. The scraper col-
lects all attribute values for all web elements for a web page and stores
them for further analysis. This scraping is achieved by a script that cycles
all web elements in the DOM tree and extracts values defined in the W3C
list of HTML attributes. The scraped information is stored in CSV files.
Based on the scraped information, we were able to collect the following
statistics to answer RQ1: (i) the number of occurrences of non-empty
attributes, i.e., different than "" (empty) or null; (ii) the variability of the
values, i.e., the ratio between the number of different values divided by
the total number of non-null, non-empty values. We recognize that the
latter metric has more or less inherent variability for specific attributes,
e.g., labels. Still, since we did not look at the content for this evaluation,
only the variation in content, we perceive this effect to be minor.

4. Correspondent web element Selection: To acquire target web elements and
oracles for the automated evaluation, we manually selected web elements
from each of the 40 web application homepages. We only selected elements
from the start page since the Internet archive only stores static pages,
meaning that javascript, databases, etc., do not always work. We were
only interested in the web element finding ability of the approach and
perceived that it is unlikely that web elements on other pages on a web
application have a significantly different distribution than those in the
home pages. The sample of web elements was also analyzed to verify that
we had acquired a comprehensive set of different types of web elements.
The web elements that were chosen for the evaluation had to comply with
one or several of the following attributes: (i) were possible to perform
actions on (e.g., anchors, buttons, menu items, input fields, text fields,

152
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

check-boxes, and radio-buttons); (ii) can be used for assertions or synchro-
nization (e.g., top-level headlines); (iii) belong to the core functionality of
the web application homepage; (iv) are present in both versions of the
web application homepage. The rationale for (iv) is given by the study’s
objective to look at the approach’s ability to find web elements over dif-
ferent versions of the web applications. Through this manual selection,
we devised a set of 442 matches (pairs of corresponding web elements) for
the experiment.

5. Equivalent web elements Selection: The number of manually-identified
matches is then expanded by applying the equivalence definition according
to the formula in Section III of the present paper. By considering the set
of equivalents of both web elements in each of the 442 pairs, we came up
with an extended set of 1163 matches.
We finally define a balanced test set for applying the Similo and VON
Similo algorithms. To build the test set, we include the aforementioned set
of 1163 matches and 1163 randomly-selected non-matching web element
pairs. We take the same number of matching and non-matching web
element pairs for each considered web application.

6. Match Definition: In the experiment step, for each pair of web elements
(either matching or non-matching), we compute the Similo similarity score
and the VON Similo score. The scores are normalized in the range [0, 1].
No normalization step was performed in the original formulation of the
Similo locators. The algorithm, instead, computed the similarity scores
for all candidate web elements and ranked them with no normalization
steps. For our purposes, it was necessary to add a normalization step to
compare the performance of Similo with that of VON-based locators.
A web element of the new web application is considered a match to the
target web element if the Similo (or VON Similo) score is higher than a
threshold. The threshold is provided as a variable parameter to the algo-
rithm, which is necessary since both algorithms would otherwise always
return a web element (even with a meager similarity score).

7. Analysis: The results were then analyzed using formal and descriptive
statistics to identify the metrics used to answer the study’s research ques-
tions. For this study, we use the target web element (Wt) to describe
the sought web element taken from the older web application version. In
turn, the correct candidate web element (Wc) is sought in the new version

6.5 Results 153

of the web application such that Wc ∈ WS, where WS is the set of all
web elements in the newer version of the web application. Given these
definitions, we get the following outcomes of a web element localization:

• True positive (TP) - When there is a found match such that Wt

= Wc when Wc ∈ WS.
• False negative (FN) - When there is no match found such that Wt

̸= Wc despite Wc ∈ WS.
• True negative (TN) - When there is no match found such that Wt

̸= Wc when Wc /∈ WS.
• False positive (FP) - When there is a match found such that Wt

= Wc despite Wc /∈ WS.

Counting the occurrences and distributions of the above measurements
provides us with the information required to answer all the study’s research
questions. Based on such definitions we in fact compute the following
derived metrics: Precision, as TP/(TP+FP); Recall, as TP/(TP+FN);
Accuracy, as (TP+TN)/(TP+FP+TN+FN).

6.5 Results
In this section we report the results measured to answer the research questions
defined for the study.

6.5.1 RQ1 - Ideal set of attributes for VON Similo
To analyze and justify the selection of attributes for the multi-locator-based
algorithms, we computed statistics on the distribution of the attributes on all
the included web applications. We computed statistics for all the 170 standard
HTML attributes listed by W3C5.

In the considered web applications, we utilized only 35 attributes (i.e., they
were assigned at least a non-null value). In Figure 6.5 we report the percentage
of present, empty ("") or absent (null) values for each attribute. For the sake
of readability, we only report the attributes for which the percentage of times
a value is present is above the median for all attributes (0.7%). We distinguish
between null and empty values since for specific attributes (e.g., the textual

5https://www.w3.org/wiki/Html/Attributes/_Global

154
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Figure 6.5: Distribution of absent, empty and valued attributes in the selected
web pages

6.5 Results 155

Figure 6.6: Top attributes for weighted variability in the selected web pages

156
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Table 6.1: Mean (SD) values of Precision, Recall and Accuracy over the five
test sets for Similo at varying thresholds

Threshold Precision Recall Accuracy

0.20 0.688 (0.024) 0.965 (0.056) 0.766 (0.036)
0.28 0.796 (0.029) 0.898 (0.077) 0.823 (0.045)
0.40 0.892 (0.034) 0.615 (0.121) 0.770 (0.066)
0.60 1.000 (0.006) 0.265 (0.105) 0.632 (0.052)
0.80 1.000 (0.000) 0.008 (0.012) 0.503 (0.006)

content of a web element, identified by the attribute visible_text), the absence
of a value is itself a piece of information that we can use to locate a web element.

We compute the variability of each attribute as the ratio between the number
of different values present in the set of considered web elements for a given
attribute and the number of times the attribute is valued (i.e., other than null
or empty). To assign a weight to the variability with the relevance of the web
elements in identifying web elements, we multiply it with the percentage of
valued occurrences measured in the previous step. In Figure 6.6 we report the
top attributes for variability in the considered web pages. This result validates
the original selection of attributes performed in the original Similo paper since
only the XPath, ID Xpath, class, text, href, id, and tag attributes were those
with the highest variability.

It is worth noting that the XPath and ID XPath attributes have a value
equal to 1 for the variability multiplied by the valued occurrence ratio, meaning
that they are the only two attributes valued for every web element and for which
no pair of web elements can have equal values.

Answer to RQ1: The analysis of Non-Null values and variability for at-
tributes in web pages identify XPath, ID XPath, class, visible text, href,
id, and tags as the attributes that are most likely to change when present
with non-null values in elements of DOM models. The selection of attributes
for the Similo algorithm is therefore confirmed as optimal for web elements
multi-locators.

6.5 Results 157

Table 6.2: Mean (SD) values of Precision, Recall and Accuracy over the five
test sets for VON Similo at varying thresholds

Threshold Precision Recall Accuracy

0.20 0.680 (0.011) 0.991 (0.008) 0.760 (0.011)
0.40 0.968 (0.007) 0.922 (0.110) 0.941 (0.052)
0.60 1.000 (0.004) 0.475 (0.210) 0.738 (0.105)
0.80 1.000 (0.000) 0.030 (0.042) 0.515 (0.021)

6.5.2 RQ2 - Similo Performance

Having finalized the selection of attributes to consider for comparing target and
candidate web elements, we evaluated the original Similo over the set of 1163
matches as defined in section C.5.

We performed 5-fold cross validation and optimized the threshold value, used
to detect a match, on a training set and then evaluated at that threshold on the
hold-out test set. The optimal threshold values were very stable over all folds;
for simplicity we thus report results for the full set of web elements.

Table 6.1 reports the mean and standard deviation of precision (P), recall
(R), and accuracy (A) at varying thresholds. The optimal threshold, selected
to maximize accuracy on the test sets, is shown in bold.

With minimal variations between different folds, the optimal threshold for
the algorithm is a rather low value of 0.28. Raising the threshold of the algo-
rithm, in fact, lowers the number of comparisons that are signalled as matches,
which reduces the number of false positives. This low value for the threshold
may suggest that few attributes with stable values (over the selected set of 14)
are sufficient to identify a match between the original and the new web element.
Raising the threshold over 0.40 guarantees a high precision for the algorithm
(over 90%) at the expense of a rapidly increasing number of false negatives (i.e.,
number of candidates that are not matched while being correspondent to the
target).

Answer to RQ2: applied on the test dataset, the original version of the
Similo algorithm is capable of providing a mean 82.3% accuracy when a
match threshold of 0.28 is used.

158
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

6.5.3 RQ3 - VON Similo performance
In Table 6.2, we report the results for VON Similo, in the same format as for
Similo above. Also here, the optimal threshold value was stable over the five
folds.

By comparing the results in the two tables, it is clear that the optimal
threshold is higher for VON Similo. This is likely since the comparison of
multiple attribute values — instead of the one-to-one comparison of the original
Similo algorithm — increases the likelihood that a candidate web element is
deemed as matching with the target one. In other words, the increase of the
size of the candidate space, as described in section III, requires a larger threshold
or the number of false positives increases.

Even in this case the number of true positives found decays rapidly with
increasing threshold, however we can observe a precision of 100% at a threshold
of 0.60, supported by a 47.5% recall. We note that practitioners can choose to
select a different threshold level that favors either precision or recall depending
on the risks and costs they judge a false positive or a false negative to have.
However, it is clear that VON Similo can achieve higher accuracy scores than
the original Similo algorithm.

Answer to RQ3: applied on the test dataset, the Visually Overlapping
Nodes-based version of the Similo algorithm (VON Similo) is capable of
providing 94.1% accuracy when a match threshold of 0.40 is used.

6.5.4 RQ4 - Comparison between Similo and VON Similo
In Figure 6.7 we report the comparison of the two ROC (receiver operating
characteristic) curves drawn for Similo (blue) and VON Similo (red). The ROC
curves show the trade-off between the true positive rate (i.e. sensitivity) and the
false positive rate (i.e. specificity) of an algorithm, plotted at varying thresh-
olds. For simplicity, we report the ROC curves computed over the whole set of
matches without applying the 5-fold split on the data set.

We also report in the graph, as a baseline, a random classifier, which is
expected to provide points along the diagonal (i.e., number of true positives
equal to the number of false positives). An ideal classifier would instead provide
a single point where TPR = 1.00 and FPR = 0.00. In a ROC curve, the closer
the curve is to the main diagonal of the ROC space, the less accurate the test.

6.5 Results 159

Figure 6.7: ROC comparison for Similo, VON Similo, and the baseline corre-
sponding to a random classifier

160
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Table 6.3: Comparison of the mean (std deviation) of precision, recall and
accuracy of Similo vs. VON Similo, per subject application

Approach Precision Recall Accuracy

Similo 0.799 (0.130) 0.772 (0.243) 0.783 (0.157)
VON Similo 0.965 (0.061) 0.790 (0.915) 0.879 (0.153)

For our purposes, there is no benefit in obtaining a Precision-Recall curve
over a ROC curve since, by construction, the data are equally distributed be-
tween positives and negatives.

By visual comparison, it is evident how both the algorithms, Similo and
VON Similo, provide ROC curves that are significantly distant from the main
diagonal (corresponding to a Random classifier). At the same time, it is visually
evident that the VON Similo algorithm is overall better than that of Similo. This
advantage in using VON Similo can be quantified by computing the area below
the ROC Curve (Area Under Curve, or AUC).

As a final comparison, in Table 6.3, we report a comparison of the perfor-
mance of the two approaches in terms of average accuracy, precision and recall
over the set of 33 web pages used in the experiment. From the comparison we
notice that VON Similo has globally better values for all the measures on the
set of apps, with 88% accuracy against 78.3% accuracy for Similo. We also
observe rather high std. deviation values for the computed measures, caused
by a variabile number of matches and performance obtained with the tool on
individual applications.

One can also perform a Wilcoxon (paired) signed rank test [140] of the accu-
racy values per app which supports (p-value of 0.0001614) the hypothesis that
VON Similo (mean accuracy, over the apps, of 88.0%) performs differently than
Similo (78.3%). Since the argument has been made that Bayesian statistical
analysis can have benefits [65] we also compared the two approaches with a
Bayesian signed rank test [38] which gave a probability of 99.9% that VON
Similo has a higher accuracy than Similo6.

6There were clear differences also for precision and recall. We used Python 3.10 and the
library baycomp for the Bayesian SignedRankTest and (base) R 4.2 for the Wilcoxon test.

6.6 Discussion 161

Answer to RQ4: As demonstrated by the comparison of the respective
ROC-curves and the statistical tests, VON Similo (AUC = 0.91, mean accu-
racy = 0.94, mean accuracy per app = 88.0) performs significantly better
than Similo (AUC = 0.88, mean accuracy = 0.82, mean accuracy per app =
78.3).

6.6 Discussion
This study has shown that multi-locator-based approaches, using web element
attributes, can provide robust web element localization, in the real world, for
evolving web applications. When coupled with visually overlapping node based
(VON-based) locators, the method is robust with a 94 percent success rate in
finding the correct web element.

This result is significant, especially when put into context of how tests are
maintained in industry. The study results are acquired from a random sample
of web applications with both larger and smaller amounts of change between
versions, controlled by the time in the past a web application was sampled (from
6 months to 5 years). In a real scenario, in industry, the probability of only
more minor changes between versions is theoretically higher than the scenario
presented here since test suites would be run daily or at least weekly. This leads
us to the logical conclusion that; in an authentic setting, the average accuracy of
the proposed approach would be higher than 94 percent. We base this discussion
on the attribute-based locator technology, which precision is affected by change.
For example, if only one attribute is changed, the accuracy will be higher than if
two or more attributes have changed. For shorter iterations between test runs,
the number of changes to the application will be less and, as such, the solution
accuracy increases. However, although logically sound, future work is required
to verify this conclusion, e.g., through empirical and industrial research.

Regardless, given the result of the study, an interesting question becomes
what industry is willing to accept in terms of false test results, since, as stated
in Section 6.1, robust web element localization is one of the core challenges with
automated GUI testing and perceived a root-cause to its lack of general use in
practice. Hence, although the presented results are significant, compared to,
for instance, state of the art research by Leotta et al., which reported a success
rate of 33-93 percent (93 percent being a theoretical best case limit) [99], a
philosophical question remains if 94 percent success rate is good enough? A
94 percent success rate still implies that six web elements will not be found
every 100 test actions, or one faulty test behavior every 17 steps of script code

162
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

run on modified parts of the SUT. For a test suite ordering in the hundreds of
test cases, 94 percent success rate would still constitute a significant amount
of root-cause analysis and test script maintenance. However, once more, the
selected time elapsed between tests of the web application versions were in the
experiment abnormal when compared to the time between executions of a GUI-
based regression test suite in industrial practice.

However, as a speculative counterpoint, since any accuracy below 100 percent
seems to be an issue for larger test suites, the question arises if 100 percent
robustness is even achievable. Keeping in mind that web element localization
implies searching for a target web element in a context where there is often
not an exact match, only a partial match, due to changes in the attributes,
appearance, or behavior of the sought web element. Under these circumstances,
we also see humans having less than a 100 percent success rate, so the question
is how far an automated approach can reach.

Additionally, the attribute-based approach shows that with impartial data,
we can still identify web elements with high probability. When one of these
web elements is identified, the attributes that are no longer valid can be auto-
matically repaired—Repair, in this case, implies updating attributes that are
no longer valid. Thus, mitigating much of the maintenance costs associated
with test scripts. Consequently, keeping the delta between test script versions
and the SUT low implies a larger probability of web element identification suc-
cess. Thus, once more speaking towards the potential of the approach’s ability
to reach higher than 94 percent success rate in a real scenario in industrial
practice.

Conceptually, VON-based locators can work for any DOM-based multi-
locator approach, i.e., on other platforms not used in this paper, such as An-
droid or desktop. However, VON-based locators only work with multi-locator
approaches and would not work for single-locator (e.g., Selenium-based) scripts
due to a lack of information. Consider a Selenium action based on an XPath
locator, but said XPath is no longer available in a new version of the target web
application. All candidate information can be acquired from the new site, but if
additional information is not available for the target web element, there would
not be a way to map the target to any of the candidates reliably. This is a
limitation of the approach since, a priori, the amount of information to reliably
locate a single-locator web element in a different version of the web application
is not known. This is a subject of future work that entails ranking the attributes
based on their relative power to be used as locators.

Furthermore, the analysis of the attributes used for this work shows that
the 14 attributes that Similo used are the most frequently populated ones on

6.6 Discussion 163

modern web pages. Thus, implying that these provide the most value for web
element localization. This result is significant, as previous works have presented
lists of suitable attributes [49, 75, 86], but not provided empirical evidence to
support these claims. The list of attributes provided in this work, although only
contemporary, thereby provides insights into how to design more robust GUI
testing tools for the foreseeable future. Future work could also investigate if
there are notable dependencies, or even domain aspects, to how these attributes
are populated and how, for further improvements into web element localization
and automated repair. Such analysis should also look at the relative power of
different attributes. Looking at the list of attributes in Figures 6.5 and 6.6
we note some interesting observations. ID is an often mentioned attribute for
web element localization [22, 99, 147]. However, as shown by the results, ID
is seldom used in practice, implying that reliance on this attribute would have
detrimental effects on web element localization. Hence, from a practical per-
spective, the attributes need to be weighed in terms of power versus availability.
One or several commonly available attributes, e.g., XPath or tag, have a higher
probability of being useful than a perceived more powerful attribute, which is
seldom available, such as ID. Further research is, however, required to evaluate
this relative power between attributes.

Another finding concerns the contents of the attributes of the web elements.
In Similo, locator parameters are compared with various comparators such as
equals, Levenshtein distance, and integer distance. These are utilized in this
research based on expert judgment, but other comparators, e.g., euclidean dis-
tance, could also be used. In future work, a valuable analysis would investigate
the types and variability of attribute data to assign the most suitable com-
parators. For instance, XPath strings are unique to each candidate and are
represented as Strings of longer length. This paper uses Levenshtein distance
for their comparison, but other approaches would likely work equally well or
even better. This mapping between key web element attributes, the character-
istics of the attribute data, and comparators could theoretically be done using
machine learning, e.g., using learning to rank [162]. Similarly, we can also op-
timize the weighting of each comparator-attribute tuple. However, this is once
more a subject of future research.

6.6.1 Threats to validity

In this section we discuss the threats to the study and its results pertaining to
the internal, external and construct validity of the research.

164
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Generalizability: The paper provides two contributions; (1) analysis of
web element attributes used in industrial practice and (2) VON-based locators.
For (1), we perceive the results to be generally valid, as they are gathered
from commonly used web pages from larger companies that should be perceived
as adopters of best state-of-practice approaches. However, for (2), the results
are delimited to web element localization with multi-locators as discussed in
Section 6.6. This diminishes the result’s industrial applicability since most
industrial frameworks, like Selenium, utilize a single-locator approach. As such,
adopting VON-based multi-locators would also require a technological shift in
approaches or tooling for developing such test cases. Although scripts that use
multi-locators can be developed manually, we perceive recording such tests as
beneficial from an efficiency perspective.

Subject selection: We took the subjects for this analysis from the Alexa.com
web application (as of writing, the site has been discontinued), which reduces
bias in the sampling as the web applications on the list are outside the re-
searchers’ control. However, we chose only a subset of the list, i.e., the top 40
pages (33 used after excluding, for instance, broken and duplicate sites). This
set is still perceived as significant when compared to other studies in this area of
research. However, it is unknown how representative the result is to any general
web application on the internet. Analysis of the tags used in the web elements
of these web pages does, however, provide us with confidence that all types of
web elements that can, theoretically, be encountered have been identified. We
stress, however, that this research only focused on web element identification,
and therefore detrimental effects that may arise during test execution were not
covered. An example of such an effect is the acquisition of web element at-
tribute data during a state transition. A lack of synchronization between the
test script and AUT could result in missing attributes if pre-analysis of web
element information begins before the AUT is fully loaded.

Comprehensiveness: VON Similo was designed with flexibility in mind to
optimize its potential use in practice. A drawback of this design is that the com-
parators and attributes used in this study are a subset of possible attributes and
comparators, as discussed in Section 6.6. While not reducing the validity of the
results presented in this work, this implies that we could achieve better results
with other constellations of parameters. We defend this unorthodox statement
by the presented results that indicate a considerable increase in precision and
recall compared to state of the art. As such, although there is no threat to the
validity of the results of the current implementation, given the set of analyzed
web pages, we cannot state if this is the best implementation of the approach.

6.7 Conclusions and Future Work 165

Further research is thereby required with other constellations and contexts to
optimize the approach.

6.7 Conclusions and Future Work
In this paper, we proposed a novel location algorithm for web elements in web
applications, i.e., Visually Overlapping Nodes (VON). We applied this approach
by extending an existing multi-locator approach (Similo), thereby obtaining the
VON Similo approach.

To investigate the accuracy of the algorithm, we performed an empirical in-
vestigation by manually identifying a set of matches between mutated widgets in
different releases of the same application and then measuring the effectiveness
of the original and extended approaches to determine correct matches. This
analysis led us to measure a +9.9% increase in accuracy for VON Similo with
respect to the original approach. It is worth underlining that the original Sim-
ilo was already proven as better performing than state-of-the-art multi-locator
algorithms (e.g., Leotta’s ROBULA+ [100]).

This work first assessed the possible benefits introduced by the concept of
Visually Overlapping Nodes when performing GUI testing of web applications.
Therefore, fine-tuning the approach can be obtained by empirically finding the
optimal values for several fixed coefficients and variables employed by the algo-
rithm.

The algorithms evaluated and compared in this study used only static weights
defined in the original Similo algorithm and were compatible with state-of-the-
art tools like COLOR[86]. Selecting a different set of weights for the attributes
used in the comparison can lead to significantly different results in terms of
precision and accuracy. The same reasoning applies to selecting the attributes
involved in the score computation.

In our immediate future work, we plan to employ machine learning-based
approaches to identify the optimal set of attributes, and related weights, to
maximize the accuracy of Similo. As a further improvement of the algorithm,
it is possible to consider returning as output not only a single matching web
element but a ranked list of the most matching candidates. This evolution of
the algorithm can also benefit from the application of machine-learning-ranking
(MLR or Learning to Rank) techniques.

166
Robust Web Element Identification for Evolving Applications by

Considering Visual Overlaps

Chapter 7

Improving Web Element
Localization by Using a
Large Language Model

Abstract

Context: Web-based test automation heavily relies on accurately finding web
elements. Traditional methods compare attributes but don’t grasp the con-
text and meaning of elements and words. The emergence of Large Language
Models (LLMs) like GPT-4, which can show human-like reasoning abilities on
some tasks, offers new opportunities for software engineering and web element
localization.

Objective: This paper introduces and evaluates VON Similo LLM, an en-
hanced web element localization approach. Using an LLM, it selects the most
likely web element from the top-ranked ones identified by the existing VON
Similo method, ideally aiming to get closer to human-like selection accuracy.

Method: An experimental study was conducted using 804 web element
pairs from 48 real-world web applications. We measured the number of correctly
identified elements as well as the execution times, comparing the effectiveness
and efficiency of VON Similo LLM against the baseline algorithm. In addition,
motivations from the LLM were recorded and analyzed for all instances where
the original approach failed to find the right web element.

168
Improving Web Element Localization by Using a Large Language

Model

Results: VON Similo LLM demonstrated improved performance, reducing
failed localizations from 70 to 40 (out of 804), a 43% reduction. Despite its
slower execution time and additional costs of using the GPT-4 model, the LLM’s
human-like reasoning showed promise in enhancing web element localization.

Conclusion: LLM technology can enhance web element identification in
GUI test automation, reducing false positives and potentially lowering mainte-
nance costs. However, further research is necessary to fully understand LLMs’
capabilities, limitations, and practical use in GUI testing.

Keywords: GUI Testing, Test Automation, Test Case Robustness, Web
Element Locators, Large Language Models

7.1 Introduction
Software testing plays a vital role in ensuring the quality of software appli-
cations. However, testing is often a time-consuming and expensive process in
practice [71, 73]. By leveraging automation, organizations can run tests more
frequently, improve test coverage, and thereby identify more defects faster, with
positive impacts on software lead times and software quality [17, 28, 131].

Automation is applied in various types of testing, but one of its primary
uses in practice is in automated regression testing. Regression testing allows
testers to evaluate the quality of each software release. Typically, at higher
levels of system abstraction, such as the Graphical User Interface (GUI) level,
testers create a suite of test scripts that simulate end-user scenarios and verify
the application under test’s (AUT) correct behavior by using automated oracles
[103, 108]. However, it is common for new software releases to introduce changes
that can break existing automated regression tests, which require maintenance
efforts and costs to update and repair the test scripts. The maintenance cost
is exceptionally high when testing an application through its GUI, as GUIs
frequently change between releases [26, 58, 152]. In addition, GUI scripts are
subject to breaking from changes to the underlying logic and architecture of the
AUT that modifies its behavior.

Furthermore, GUIs are primarily designed for human interaction (i.e., not
machine-to-machine communication), which presents additional challenges for
automation, such as synchronization between the test scripts and the AUT.
These challenges, although present, are not considered as prominent in lower-
level testing techniques like unit testing [131].

Test script robustness is one of the most reported challenges in web test au-
tomation [121]. The challenge involves making tests resilient to smaller changes

7.1 Introduction 169

to the AUT that should not affect the test execution while still allowing the tests
to detect significant differences that could potentially be defects. Many solu-
tions that increase the robustness of locating web elements have been proposed
for mitigating this challenge [49, 98, 99, 100, 117, 151]. Some of the more recent
approaches use similarity scores to identify the most similar web element to a
target. This is done by using previously stored properties (i.e., extracted from
the corresponding web element in a previous version of the web application)
and comparing the stored properties to the updated web elements [122, 125].
The web element with the highest score is assumed to be the most likely web
element to use in an interaction (e.g., a click or type action). While conven-
tional algorithms (i.e., non-AI) can be used for finding similarities between web
elements, they still typically lack knowledge about how web applications work
and the semantic meaning of texts (i.e., skills possessed by a human tester).
Being able to tell if different words or sentences have the same meaning or that
two different web elements have contextual similarities (e.g., are closely located
or are interchangeable solutions) could be a powerful feature in a testing tool.
For example, assume a button in a web interface that changes the caption from
’Submit’ to ’Send’ in an updated version. A script that relies on the button
caption to identify the next action would likely not find the new caption iden-
tical to the old caption without some form of semantic understanding, causing
a false positive (i.e., a failed script execution). On the other hand, if a test tool
could reason that the captions still have the same meaning (i.e., in that specific
context), they could perceivably carry on without failing the test execution.

Large language models (LLMs) are trained on vast amounts of data and
utilize deep learning techniques to capture linguistic patterns and dependencies
[153]. We have only begun to explore the possibilities of using LLMs in test
automation. One such example is SocraTest, a vision of a framework for con-
versational testing agents that could aid a human software tester by performing
tasks autonomously [63]. Recent studies utilize natural language processing
(NLP) with heuristic search and the DOM structure to identify web elements in
web applications [85] or use LLMs to generate text inputs for GUI applications
based on semantic understanding and GUI application context [105, 106, 161].
The proposed solution in this paper is based on the hypothesis that we can
improve web element localization even further by combining an LLM with a
traditional algorithm to take advantage of some of the benefits of the LLM,
e.g., its assumed semantic understanding and contextual awareness, while uti-
lizing the speed of the conventional algorithm.

The specific contributions of this paper are:

170
Improving Web Element Localization by Using a Large Language

Model

• A novel approach that can improve web element localization by utilizing
a large language model.

• An empirical study that shows the effectiveness and efficiency of the pro-
posed approach compared to the baseline approach.

• A qualitative content analysis on the motivations gathered from the LLM,
explaining the main aspects used when comparing the similarity of two
web elements.

This paper is structured as follows. Section 7.2 gives a short introduction to
large language models. Section 7.3 covers the details of both previous versions
and the proposed enhancement to the Similo algorithm. The design, research
questions, and procedure of the empirical study are presented in Section 7.5,
and the results in Section 7.6. We then discuss results in Section 7.7 and state
conclusions and future work in Section 7.10. Section 7.9 presents related work.

A package for replicating the experiment is available for download from [16].

7.2 Large Language Models

Large language models (LLMs) like GPT-4 have revolutionized Natural Lan-
guage Processing (NLP) by leveraging the Transformer architecture [153]. This
groundbreaking approach replaced traditional recurrent neural networks (RNNs)
with a self-attention mechanism, enabling the models to capture long-range de-
pendencies efficiently. These models are pre-trained on vast amounts of data,
allowing them to grasp the meaning of input prompts and generate text. Notable
examples of recent LLMs include OpenAI’s Generative Pre-trained Transformer
(GPT-3, GPT-3.5, and GPT-4) [45] and Google’s Pathways Language Model
(PaLM) [50]. ChatGPT is a sibling model to the InstructGPT model, which is
an improved version of GPT-3 that has been fine-tuned and trained with human
feedback [51] to improve its ability to follow instructions [133]. We can also use
ChatGPT as an interface to the newer GPT-4 model, which is several magni-
tudes larger (i.e., about 1000 times) than previous GPT models and performs
close to human-level on some tasks [45]. We have included a more detailed
comparison between the two latest versions of GPT in Section 7.5.4.

7.3 Similo 171

7.3 Similo

VON Similo is a web element localization algorithm that uses a multi-locator
approach, similar to previous works, e.g., Leotta et al. [100]. In contrast to
single-locator solutions, multi-locators use multiple properties of a web element,
such as ID, XPath, label, and tag, to find a target. This is achieved by com-
paring the properties of each candidate web element on a web-page with the
desired properties of a target element (i.e., the correct candidate), resulting in
a similarity score. A heuristic is then applied that the web element with the
highest similarity is the most likely candidate to be a match.

VON Similo also utilizes the concept of visually overlapping nodes (VON),
which makes use of the hierarchical structure of web elements in modern web
applications and their representation in a document object model (DOM) [160].
The VON concept considers that multiple DOM nodes (i.e., web elements) are
often visually overlapping (i.e., displayed in the same visual area in the web
browser) and conjointly represent the same visual web element to the user.
These conjoint elements share or have similar properties, e.g., overlapping areas,
coordinates, and similar XPaths. This implies that interactions (e.g., a click) on
the area represented by any of these overlapping nodes will yield the same GUI
state transition (i.e., event). As such, any of the nodes can be used to execute
an automated test case, effectively increasing the number of valid web elements
for an interaction from a single element to the number of overlapping elements
in a visual area. This increase in targets improves the probability of finding a
web element after changes to the tested application, thereby increasing the test
execution robustness.

In this paper, we use the following nomenclature:

• Properties: attributes and other information (e.g., location, size, XPath,
etc.) that can be extracted from a web element.

• Candidate: a web element containing properties that can be evaluated
by VON Similo. Candidates are typically captured from the currently
active (i.e., visible) web page.

• Desired properties: the properties we are looking for in a candidate.
The desired properties are often captured or recorded from a target in
a previous version of the SUT (i.e., when the test script was created or
maintained).

172
Improving Web Element Localization by Using a Large Language

Model

Figure 7.1: Graphical representation of the computation of similarity score be-
tween two different sets of web element properties.

• Similarity score: a score representing the distance in similarity between
two sets of properties, where a higher score represents higher similarity
between two web elements.

• Visual web element: one or many DOM nodes that overlap visually,
according to the Visual Overlap heuristics defined by the VON-Similo
algorithm (described in Section 7.3.2).

7.3.1 Standard Similo
VON Similo is based on the initial version of the Similo multi-locator algorithm
proposed by Nass et al. [123]. Similo attempts to identify the web element
among a set of candidates that is most similar to the desired properties. The
desired properties are often gathered or recorded from a previous release of
the same AUT but can be any set of properties. Candidate web elements are
typically retrieved from the current (i.e., visible) web page. The standard version
of Similo used 14 properties, listed in Figure 7.1.

Each property is associated with a comparison operator and a weight (also
included in Figure 7.1). The comparison operator compares the property value
of a candidate with the desired property value and returns an output value

7.3 Similo 173

Figure 7.2: The YouTube search bar.

between zero and one (or binary zero or one). Using the output values, a
similarity score is then calculated for each candidate by summarizing the weight
multiplied by the result from the comparison operator for all 14 properties. After
comparison of all candidate element scores, Similo then returns the candidate
with the highest similarity score, assumed to be the most similar web element
to the target element with the desired properties. Optionally the algorithm can
output a ranked list of candidates from higher to lower similarity scores.

7.3.2 VON Similo
The concept of visually overlapping nodes (VON) can be applied to Similo to
increase the likelihood of locating the correct web element (i.e., according to
the oracle) [124]. To illustrate the VON concept with an example, Figure 7.2
contains a picture of the search bar on YouTube.

The light-blue area of the image contains two DOM elements in a hierarchy.
A simplified version of that DOM structure is shown in Listing 7.1.

<div class =" sbib_b " id=" sb_ifc50 ">
<input id=" search " name=" search_query ">

</div >

Listing 7.1: DOM hierarchy of the YouTube search bar.

As can be seen from this example, what visually appears to be only one
element is actually represented by a div element containing an input element
(i.e., two DOM elements in a hierarchy). This exemplifies how modern web pages
are structured and presents a problem when selecting an oracle that represents
the correctly located DOM element (i.e., web element) since there is more than
one to choose from. The VON concept handles this problem by treating both of
the DOM elements as equally correct by merging the properties of both elements
together into one visual web element (i.e., a new virtual element). Listing 7.2
illustrates how such a visual web element could be represented where the double
pipe (i.e., “OR” operator) denotes that an attribute could have more than one
value.

174
Improving Web Element Localization by Using a Large Language

Model

<div || input class =" sbib_b " id=" sb_ifc50 || search " name=" search_query "
/>

Listing 7.2: Example representation of a visual web element.

There are two benefits to the VON approach. First, it reduces the number of
candidate web elements (i.e., since there are typically fewer visual web elements
than DOM elements on a web page), resulting in a higher probability of locating
the correct one. Secondly, merging the properties of all the DOM elements
belonging to the same visual web element will result in a higher (or the same)
similarity score than distributing the score on several DOM elements in the
hierarchy (i.e., any contributions to the similarity score, when comparing the
properties, is concentrated on the same visual web element instead of being
distributed over several DOM elements).

Two web elements (W1 and W2) are considered to belong to the same visual
web element if the following conditions are satisfied:

1. The ratio between the overlapping areas of the web elements on the web
page, and the union of the areas of the two web elements, is higher than
a set threshold value (0.85 was selected by Nass et al. [124]). The ratio
can be computed as:

∩(R1, R2)
∪(R1, R2)

where: R1 and R2 are the rectanglular areas—Calculated using the coor-
dinates (i.e. x and y) and size (i.e. width and height)—where the elements
are visible on the web page. The intersection of these areas thereby rep-
resents the size (in pixels) of the common area occupied by R1 and R2,
and the union represents the size (in pixels) of the total area occupied by
R1 and R2.

2. The center of the web element W2 is contained in the rectangle R1. Note
that this condition is always true if the threshold is greater than 0.5.

VON Similo (i.e., the VON concept applied on Similo) uses the same set
of properties as in Figure 7.1 with the difference that each property value can
take multiple values instead of just one, as in the Similo case. A property that
holds more than one value is compared several times (i.e., one time per value).
Assuming we would like to compare the Tag property in the web elements W1
and W2, we would need to perform N*M comparisons assuming that the Tag

7.4 VON Similo LLM 175

property in W1 contains N values and the Tag property in W2 contains M
values. The highest (i.e., best) comparison outcome of the N*M comparisons is
selected as the result and appended to the similarity score. As such, the final
score can be comprised of the comparator outcomes of property values from
multiple DOM elements joined in the new virtual element.

For example, assume that the Tag property values are ’div’ and ’span’ for
W1 and that the corresponding property values are ’span’ and ’button’ for W2.
Comparing all the combinations (i.e., four) will result in a match (i.e., ’span’)
and return the value one from the equals comparison operator (See Figure 7.1).

7.3.3 Limitations of Similo and VON Similo
While Similo and VON Similo increase the tolerance to changes (i.e., robust-
ness), there are still situations where the algorithms fail to find the web element
specified by the human oracle. Our hypothesis is that humans possess rea-
soning capabilities, e.g. semantic, logical or contextual, about language and
web applications that the algorithms lack. For example, assume that a button
changed the caption (i.e., visible text) from ’Save’ to ’Store’. A human would
likely consider them to be equivalent buttons since the semantic meaning (i.e.,
purpose) is still the same, while the algorithm would struggle since the calcu-
lated distance between the two captions, e.g. using Levenshtein distance, would
be quite large, negatively impacting the similarity score. Another example is
when a button changes from {tag: ’input’, type: ’button’} to {tag: ’button’}.
If the tags were compared using the equals comparator, or even a distance com-
parator, the algorithm would not spot any similarities, while a context-aware
human might know that a ’button’ is a common replacement for an input field
of type ’button’ (i.e., an older standard). The core hypothesis of this work is
thereby that large language models (e.g., GPT-4), trained on a vast amount of
texts and websites, possess some form of reasoning, akin to humans, which can
complement conventional algorithms to improve their robustness.

7.4 VON Similo LLM
VON Similo LLM is an attempt to take advantage of the speed and determinism
of a conventional algorithm, VON Similo, but improved by the language un-
derstanding/processing and assumed reasoning capabilities of a large language
model (LLM). In VON Similo LLM, we begin by ranking all the candidates
present on the current web page with VON Similo. This is done by comparing

176
Improving Web Element Localization by Using a Large Language

Model

Figure 7.3: The VON Similo LLM process.

each element’s properties to the desired properties (i.e., properties stored when
creating or maintaining the test) of the target element. Next, we extract the
top ten candidates from the ranked list of candidates provided by VON Similo.
Each candidate in the top ten list and the desired properties of the target are
then converted into a suitable format (i.e., we used JSON in the experiment
since that should be a format familiar to an LLM). A prompt is then generated
for the LLM (i.e., GPT-4 in our case) containing instructions for the compar-
ison, the ten candidates, and the desired properties of the target. Figure 7.3
contains all the steps further detailed below.

1. The first step in the process is to extract all the candidate web elements
from the currently visible web page and rank them, based on similarity,
using VON Similo. VON Similo compares the desired properties with the
properties of each of the candidates and produces a similarity score, as
shown in Figure 7.1. The candidates are now sorted on similarity score,
and the top ten continue to the next step. We decided to limit the num-
ber of candidates to ten for our experiments to prevent the prompt from
exceeding the usage quota and also reduce the runtime cost of utilizing
the LLM API. A usage quota is a limit of tokens spent over some time.
Quotas prevent a user of GPT-4 from accidentally paying too much money
on prompts.

2. The next step is to convert the ten candidates into a format that the
LLM should be familiar with since that enables us to create a prompt
without explaining the format. We decided to use JSON since that is a
commonly used format when communicating over the Internet. Instead of
creating an array, we decided to place each JSON structure on a separate
line. Listing 7.5 shows an example of a prompt containing ten candidates
encoded in JSON format.

3. The third step is to create a prompt that contains instructions on what we
expect the LLM to do and what we would like as output. Listing 7.3 shows

7.5 Methodology 177

the prompt structure we used. The first eleven rows of the prompt contain
one line of instruction and ten lines of candidates in JSON format. We also
provide a unique widget id (i.e., incremental count) with each candidate
to simplify the output. Next, we add the instruction that we expect the
LLM to return with the widget id to the candidate most similar to the
desired properties, also converted into JSON format. Listing 7.4 shows an
alternate prompt structure used when asking the LLM to provide us with
motivations explaining why this candidate is considered the most similar.
We have included a more complete example of the second prompt version
in Listing 7.5.

4. The final step is to send the prompt to the LLM. The widget id of the most
similar candidate and, optionally, the motivation of the choice, depending
on the prompt used, are retrieved as output.

Given the following candidate web elements (|| means that an attribute
can have multiple values):

<10 candidates in JSON format >

find the one that is most similar to the element :
<desired properties in JSON format >
Answer with the widget_id number (digits) only , no explanation or text

characters

Listing 7.3: Prompt structure used in experiment when asking for widget id
only.

Given the following candidate web elements (|| means that an attribute
can have multiple values):

<10 candidates in JSON format >

find the one that is most similar (answer with the widget_id of the most
similar and motivate why using a list) to the element :

<desired properties in JSON format >

Listing 7.4: Prompt structure used in experiment when asking for widget id and
motivations.

7.5 Methodology
This section presents the research design, the research questions, and the re-
search procedure of the empirical study performed to evaluate the benefits and

178
Improving Web Element Localization by Using a Large Language

Model

drawbacks of VON Similo LLM compared to VON Similo in terms of effective-
ness and efficiency.

The first objective of the experiment is to evaluate the difference in effec-
tiveness between VON Similo LLM and the VON Similo approaches (i.e. when
finding web elements in two different releases of the same web application). The
second objective is to compare the runtime performance (i.e., efficiency) of using
the two approaches. Finally, the third objective is to evaluate the motivations
returned from the LLM to explain why the LLM found the chosen candidate
element to be the most similar match to the correct candfidate.

7.5.1 Research Questions
The study aims to answer the following research questions:

• RQ1: What is the effectiveness of VON Similo LLM compared to the
VON Similo approach in terms of finding correct web elements?

• RQ2: What is the efficiency, measured as execution time, of VON Similo
LLM compared to the VON Similo approach?

• RQ3: What main aspects does a large language model use to improve
web element identification when the conventional approach fails?

The first research question (RQ1) was answered by running both approaches
on a set of 804 web element pairs extracted from old and new versions of 48
real-world web applications. With a new version, we refer to a later iteration of
a particular web application that has been subject to changes to its code or vi-
sual appearance that differentiates it from the older version (Further described
in Section 7.5.2). Our hypothesis is that VON Similo LLM, using its reasoning
capabilities, e.g., of semantic equivalence, logical patterns, or contextual infor-
mation, would be able to correctly identify more correct candidates than VON
Similo.

Next, research question 2 (RQ2) was answered by measuring the execution
times of both approaches to determine the best matching web element. We
measured the execution time as the time taken from calling an approach (i.e.,
by providing it with the desired and candidate properties) and returning the
most similar candidate. Our hypothesis was that VON Similo would outperform
VON Similo LLM in this aspect since VON Similo LLM utilizes the GPT-4 API
(selected in Section 7.5), which, at the time of conducting the experiment, is
relatively slow and restricted (i.e., in terms of requests per minute). In addition

7.5 Methodology 179

to the actual overhead cost, this metric is assumed to give insights to allow us
to discuss the current technology’s industrial applicability.

Finally, we answered research question 3 (RQ3) by conducting a qualita-
tive content analysis of the motivations gathered from the LLM, which aims to
explain why the LLM found one candidate to be more similar to the correct can-
didate with some desired properties in more complex cases, i.e., in cases where
the conventional approach (i.e., non-AI) failed to locate the correct candidate.
This analysis was restricted to cases where the conventional solution failed out
of cost constraints, i.e., the output from the GPT-4 API is associated with a
monetary cost per output token.

7.5.2 Selecting Web Applications and Extracting Proper-
ties

The web applications chosen for this experiment are the same 50 websites used
by Nass et al. to evaluate previous versions of Similo [122], taken from the
Alexa top 50 list. One of the applications from the top 50 list was deemed
inappropriate due to its adult content, and one was a duplicate (i.e., two URLs
pointing to the same web application), resulting in a final set of 48 web applica-
tions. Additionally, we used the same web application versions, a new one and
one 12 to 60 months older, as in the previous study [122], accessed through the
Internet Archive website 1. A scraping tool (developed in Java by the authors)
was then applied to extract properties from all pairs of web elements that were
perceived to be equivalent and available in both the old and new versions of
each application. These elements were chosen manually through inspection of
the applications and then used as oracles for the study. We manually included
web elements for which the following criteria are met: (1) it is possible to per-
form an action on the web element, (2) the element can be used for assertions
or synchronization by an automated testing tool, (3) the element belongs to
the core features of the AUT, and (4) the element is present in both versions
of the AUT’s homepage (i.e., the page that the main URL points at). Criteria
(4) was necessary since the Internet Archive only stores static pages, meaning
that javascript, databases, etc., do not always work. Because the pages are
static, they often, unintentionally, have diverse behaviors to newer versions of
the AUTs. Whilst this design choice of only using the homepage may delimit
the generalizability of the results, we perceive this to be a minor threat since
most homepages contain the same elements as other pages of an AUT.

1http://web.archive.org

180
Improving Web Element Localization by Using a Large Language

Model

Furthermore, this selection process implies that if a human could identify
the web element in both versions of the web application, it was likely included.
This further implies that some web elements, which had been changed beyond
recognition but which were still available, may have been overlooked during
sampling. However, due to the size of the sample set and the efforts spent to
capture all pairs in the extraction process, we find this threat to be negligible.

We wish to highlight that the experiment only concerns the web element
finding ability of the approaches. We were not concerned with the types of
interactions that can be performed on the elements nor how to utilize them
for synchronization. This objective further justifies our delimitation of only
choosing web elements on the homepage of each website since we perceive these
to be representative of other pages as well. A perception that may not hold true
for actions.

7.5.3 Applying the VON Concept on the Extracted Prop-
erties

In the next step of the research procedure, we applied the VON concept, de-
scribed in Section 7.3.2, on each of the 804 web element pairs to add more values
(i.e., from overlapping elements) to the target web element properties. Due to
the VON concept, property values of visually overlapping web elements will be
merged (i.e., using an “OR” operation) if the ratio between the intersection and
the union of the areas exceeds the threshold value (i.e., 0.85 in our case). After
applying the VON concept, many properties will contain several values (i.e.,
options) instead of just one, as when using the standard Similo approach.

7.5.4 Selecting the Large Language Model
Large Language Models (LLMs) are evolving quickly, and new versions are fre-
quently released. For our experiment, we decided that effectiveness (i.e., in
identifying the correct candidate) was the most important aspect to evaluate
(i.e., before efficiency and cost) since we expect the performance, availability
(i.e., allowed requests per minute), and price to change in time as the services
mature. This design choice has a direct impact on RQ2, but we still perceive
the results as valuable to get a snapshot of the currently available technology.
We also expect the effectiveness of LLMs to improve, but evaluating the effec-
tiveness today will still provide us with a baseline for the future. Therefore,
we decided to select the most powerful LLM, in terms of effectiveness, available
regardless of its efficiency, monetary cost (within reason), and limitations in

7.5 Methodology 181

Table 7.1: Comparison between OpenAI GPT-versions.

GPT-version Max tokens RPM TPM Cost 1K tokens
GPT-3.5-turbo 4K 3500 90000 $0.002
GPT-4 8K 200 40000 $0.03

requests per minute. We also decided to go for an LLM provided by OpenAI
due to its reputation and ease of access. Table 7.1 contains a comparison be-
tween the different versions currently provided by OpenAI (in April 2023, when
we initiated the experiment). As seen from Table 7.1, GPT-3.5-turbo is better
in all aspects (e.g., cheaper and more requests allowed per minute), except for
max tokens (4K vs. 8K for GPT-4). The model size of GPT-4 is, however, 1000
times larger in size (170 trillion parameters vs. 175 billion parameters), hinting
at enhanced capabilities and accuracy [89]. In our case, the additional number
of tokens available for GPT-4 is welcome since the prompts of the solution are
quite large since they include many web elements, encoded in JSON format,
with the prompt. We expect each JSON representation of one web element to
be close to 1K characters, meaning that each prompt, with ten web elements,
would constitute around 10K characters or 2500 tokens (1 token ∼ 4 charac-
ters). This size is also feasible when using GPT-3.5-turbo since it is less than
the allotted 4K tokens per prompt. However, since a JSON structure includes
many special characters and digits, we expect a lower ratio than four characters
per token (i.e., lower than the expected ratio for pure text). A ratio of two char-
acters per token results in 5K tokens for the ten JSON representations alone,
motivating our selection of GPT-4 that can receive 8K tokens in one prompt. In
conclusion, we choose to use GPT-4 in our experiment even with the drawback
of a higher cost, lower RPM (i.e., requests per minute), and lower TPM (i.e.,
tokens per minute) since increased accuracy and max number of tokens are more
important for our evaluation.

7.5.5 Prompt Engineering

Prompt engineering is the intentional construction and refinement of prompts
used in natural language processing tasks. It involves formulating precise in-
structions or queries to produce desired responses from large language models.

We experimented with larger and smaller prompts with or without examples
to maximize the correctness of the output while trying to keep the prompt length

182
Improving Web Element Localization by Using a Large Language

Model

Table 7.2: The number of located (and not located) web elements when using
one or zero examples included in the prompt.

Type Total Located Not located % Located
Zero-shot 70 37 33 52.9
One-shot 70 41 29 58.6

short enough to be of practical use (i.e., since the prompt size is limited and is
associated with a cost).

Initially, the experiment was performed with a minimal prompt with no
examples (zero-shot). Hence, each prompt only contained instructions, the ten
web element candidates, and a target element in JSON format. Each JSON
element contains the property names and values of one web element. We created
the JSON elements from the following properties: Tag, Visible Text, Class, Id,
Name, HRef, Location, Area, Shape, Alt, Is Button, XPath, and Neighbor Text.
Each candidate is also given a unique id to make it possible to ask GPT-4 to
return with the id instead of the entire JSON element. The prompt asks GPT-4
to return the id of the candidate that is most similar to the target web element
(also provided in JSON format) and specify a list of reasons for the decision.
Listing 7.5 shows an example of such a prompt, including the response from
GPT-4.

Next, we reran the experiment with a more descriptive prompt that con-
tained one set of example inputs (one-shot) and the corresponding output. The
one-shot approach was hypothesized to help train the LLM in how to perform
the comparison and thereby provide a better result.

Table 7.2 presents our findings from evaluating the zero- and one-shot ap-
proaches. These were calculated on a subset of 70 web element pairs where VON
Similo failed to identify the correct target (i.e., by running VON Similo in all
the 804 cases). These cases were chosen because they were perceived of higher
complexity since the conventional algorithm failed to identify them. As can be
seen from the last column in the Table, including one example improved the
result from 37 to 41 (i.e., 52.9% to 58.6%), representing a 5.7 percent reduction
in not located web elements. Based on this result, and since the additional data
for the one-shot did not significantly extend the prompts’ token size, we decided
to include one example in all the prompts used in the full experiment, i.e., all
804 web element pairs.

To improve the results even further, we tried to increase the number of
candidates sent to the LLM (i.e., a larger list of top candidates proposed by

7.5 Methodology 183

VON Similo). We observed several drawbacks with increasing the number of
candidates: (1) increased cost due to a larger prompt, (2) failure to identify the
most similar web element due to many candidates, and (3) GPT-4 needed more
detailed examples sticking to the instructed output format (i.e., got confused by
the increased prompt size and did not return with the widget id and motivations
in the format specified by the prompt). Instead of exhaustively exploring (i.e.,
with a different number of candidates), we decided that ten candidates and
one set of examples (one-shot) would be sufficient for our experiment. Thus,
concluding that finding an optimal balance of the number of elements is out
of scope for this study. The impact of this design choice results in 13 cases
where the correct web element (i.e., according to our oracle) was not part of
the top ten candidates sent to the LLM. Hence, making it impossible for the
LLM to select the correct web element. As a result, by increasing the prompt
size, VON Similo LLM could, theoretically, have reported 13 more identified
web elements in this study. However, even doubling the number of candidates
from VON Similo (i.e., from ten to 20) would have only resulted in five more
instances where the correct element would have been part of the list of widgets
sent to the LLM. As such, we concluded that the additional results would not
outweigh the additional prompt size and cost of using the GPT-4 API.

Given the following candidate web elements (|| means that an attribute
can have multiple values):

{ widget_id :"202",tag:"a",text:"Beauty , Health ",href:" https :// www.
aliexpress .com/ category /66/ health - beauty .html",location :"277 ,541",
area:"1584",shape :"488",is_button :"no",xpath :"/html/body/div/div [5]/
div/div [2]/ div/div [2]/ div/div [2]/ dl [11]/ dt/span/a",neighbor_text :"
toys kids & babies outdoor fun sports beauty health hair automobiles
motorcycles home improvement tools "}

{ widget_id :"200",tag:"span || a",text:" Outdoor Fun & Sports ",href:" https
:// www. aliexpress .com/ category /18/ sports - entertainment .html",location
:"236 ,497",area:"8400",shape :"685",is_button :"no",xpath :"/html/body/
div/div [5]/ div/div [2]/ div/div [2]/ div/div [2]/ dl [10]/ dt/span",
neighbor_text :"bags & shoes toys kids babies outdoor fun sports
beauty health hair automobiles motorcycles "}

{ widget_id :"201",tag:"span",text:"Beauty , Health & Hair",location :"
236 ,532",area:"8400",shape :"685",is_button :"no",xpath :"/html/body/div
/div [5]/ div/div [2]/ div/div [2]/ div/div [2]/ dl [11]/ dt/span",
neighbor_text :"toys kids & babies outdoor fun sports beauty health
hair automobiles motorcycles home improvement tools "}

{ widget_id :"204",tag:"span || a",text:" Automobiles & Motorcycles ",href:"
https :// www. aliexpress .com/ category /34/ automobiles - motorcycles .html",
location :"236 ,567",area:"8400",shape :"685",is_button :"no",xpath :"/
html/body/div/div [5]/ div/div [2]/ div/div [2]/ div/div [2]/ dl [12]/ dt/span"
,neighbor_text :" outdoor fun & sports beauty health hair automobiles
motorcycles home improvement tools "}

{ widget_id :"197",tag:"span",text:"Toys , Kids & Babies ",location :"236 ,462
",area:"8400",shape :"685",is_button :"no",xpath :"/html/body/div/div
[5]/ div/div [2]/ div/div [2]/ div/div [2]/ dl [9]/ dt/span",neighbor_text :"

184
Improving Web Element Localization by Using a Large Language

Model

home pet & appliances home bags shoes toys kids babies outdoor fun
sports beauty health hair"}

{ widget_id :"199",tag:"a",text:"Kids & Babies ",href:" https :// www.
aliexpress .com/ category /1501/ mother -kids.html",location :"313 ,471",
area:"1476",shape :"455",is_button :"no",xpath :"/html/body/div/div [5]/
div/div [2]/ div/div [2]/ div/div [2]/ dl [9]/ dt/span/a[2]",neighbor_text :"
home pet & appliances bags shoes toys kids babies outdoor fun sports
beauty health hair"}

{ widget_id :"194",tag:"span",text:"Bags & Shoes ",location :"236 ,427",area:"
8400",shape :"685",is_button :"no",xpath :"/html/body/div/div [5]/ div/div
[2]/ div/div [2]/ div/div [2]/ dl [8]/ dt/span",neighbor_text :" jewelry &
watches home pet appliances home bags shoes toys kids babies outdoor
fun sports "}

{ widget_id :"206",tag:"a",text:"Home Improvement ",href:" https :// www.
aliexpress .com/ category /13/ home - improvement .html",location :"277 ,611",
area:"2196",shape :"677",is_button :"no",xpath :"/html/body/div/div [5]/
div/div [2]/ div/div [2]/ div/div [2]/ dl [13]/ dt/span/a",neighbor_text :"
beauty health & hair automobiles motorcycles home improvement tools "}

{ widget_id :"205",tag:"span",text:"Home Improvement & Tools ",location :"
236 ,602",area:" 11040 ",shape :"521",is_button :"no",xpath :"/html/body/
div/div [5]/ div/div [2]/ div/div [2]/ div/div [2]/ dl [13]/ dt/span",
neighbor_text :" beauty health & hair automobiles motorcycles home
improvement tools flash deals "}

{ widget_id :"203",tag:"a",text:"Hair",href:" https :// www. aliexpress .com/
category /200002489/ hair - extensions -wigs.html",location :"381 ,541",area
:"450",shape :"138",is_button :"no",xpath :"/html/body/div/div [5]/ div/
div [2]/ div/div [2]/ div/div [2]/ dl [11]/ dt/span/a[2]",neighbor_text :"toys

kids & babies outdoor fun sports beauty health hair automobiles
motorcycles home improvement tools "}

find the one that is most similar (answer with the widget_id of the most
similar and motivate why using a list) to the element :

{tag:"span || a",text:" Health & Beauty ",href:" https :// www. aliexpress .com/
category /66/ health - beauty .html",location :"237 ,465",area:"7140",shape :
"793",is_button :"no",xpath :"/html/body/div/div [4]/ div/div/div [2]/ div/
div [2]/ dl [11]/ dt/span",neighbor_text :"toys , kids & baby toys sports
outdoors health beauty automobiles motorcycles home improvement "}

The most similar element is the one with widget_id "201". The reasons for
this choice are:

1. Both elements have "span" as one of their ’tag ’ attribute .
2. The text "Beauty , Health & Hair" in the element with widget_id "201"

is closely related to the text " Health & Beauty " in the given element
.

3. The ’location ’, ’shape ’, ’is_button ’, and ’neighbor_text ’ attributes
in both elements have similar values , indicating that they might be
close to each other on the layout of the website and have a similar
structure .

4. Although the given element has an ’href ’ attribute and the element
with widget_id "201" does not , this could be a minor change during
the evolution of the web application , and the overall similarity of
other attributes makes it the best candidate .

Listing 7.5: Sample GPT-4 prompt with response.

7.5 Methodology 185

Figure 7.4: The process of locating a candidate web element from desired prop-
erties using the two approaches.

7.5.6 Locating Web Elements

We created a tool (implemented in Java and included in the replication package)
that uses the extracted web element properties (see Section 7.5.2) to compare
the effectiveness and efficiency of the two approaches.

Figure 7.4 shows the process of locating a candidate web element among
the candidates extracted from the newer web application version based on the
target’s desired properties extracted from an older version of the same applica-
tion. For each of the 804 web elements that were previously extracted from the
older versions of 48 web applications, the desired properties and all the available
candidates for the web application homepage were submitted as input to both
approaches. VON Similo and VON Similo LLM then identify the candidate
that holds properties most similar to the desired properties by comparing the
properties of each candidate. Next, the XPaths of an identified candidate are
compared with the Oracle XPath. Note that each candidate can have multiple
XPaths due to the VON concept since a visual web element may consist of sev-
eral DOM elements. The candidate is considered located if any of the candidate
XPaths are identical to the Oracle XPath (and not located otherwise). Table 7.3
contains a summary of the two possible outcomes after a localization attempt.

We decided to divide the experiment into three phases. Figure 7.5 contains
an overview of the phases further explained below. The first and last phases
target research questions RQ1 and RQ2, while we aim to answer RQ3 with
results from the second phase.

186
Improving Web Element Localization by Using a Large Language

Model

Table 7.3: Description of the localization result.

Localization result Description
Located The approach is able to identify the correct candi-

date web element where one of the XPaths is iden-
tical to the oracle.

Not located The approach finds a match among the candidate
web elements, but none of the XPaths are identical
to the oracle.

Figure 7.5: Overview of the three phases of the experiment.

1. Initially, we attempted to locate all the 804 web elements using VON
Similo, which resulted in 70 not being found (see Section 4.4) in the newer
web application versions based on the properties extracted from older
versions.

2. Next, we asked the LLM (i.e., GPT-4) to identify the correct web element
and motivate that choice, given the ten top-ranked elements provided by
VON Similo, for the 70 cases where VON Similo failed. We analyzed the
motivations given by the LLM to tell if the motivations were based on
semantic understanding, context awareness, or using a standard compar-
ison operator (i.e., like VON Similo). See definitions in Section 4.4. The
three categories were coded based on literature that utilizes abilities in
traditional algorithms, NLP, or LLMs when comparing GUI elements or
creating input for testing [105, 106, 122, 125, 161].
We decided to use a subset of the 804 cases to lower the cost of using
the LLM API and to reduce the number of motivations to categorize.
Selecting the cases where VON Similo failed has several benefits: (1) it is
a significantly smaller sample (i.e., less costly), (2) the correct alternative
is never the first candidate (i.e., since VON Similo failed), making the
choice less evident, and (3) it is more valuable if the LLM can find the

7.6 Results 187

Table 7.4: The total number of located (and not located) web elements for the
two approaches.

Approach Total Located Not lo-
cated

% Lo-
cated

Cost
($)

Time / local-
ization (ms)

VON Similo 804 734 70 91.3 0 29
VON Similo LLM
(one-shot)

804 764 40 95.0 35.86 1934 (STD 537)

correct web element when the conventional approach (i.e., VON Similo)
fails.

3. Finally, to evaluate VON Similo LLM, we extracted the top ten elements
that best match all of the 804 oracles (i.e., correct targets) using VON
Similo and asked the LLM to select the candidate that is most similar
to the oracle (i.e., the properties extracted from the older version) for all
oracles. To optimize (i.e., reduce) the cost and time of the experiment,
we did not ask the LLM to provide us with motivations, instead only to
return with the id of the best candidate. This design greatly reduced the
output prompt from the LLM and, thereby, the execution time since each
output character increases the execution time and cost of using the LLM
API.

7.6 Results
In this section, we present the results of the experiment study. We present the
results according to the order of the study’s three research questions.

7.6.1 RQ1 - Effectiveness
Table 7.4 contains the result when comparing the effectiveness, in terms of being
able to locate the correct candidate based on desired properties, of the two
approaches. When attempting to identify the correct candidate in 804 cases
extracted from 48 web applications, VON Similo failed to locate the correct
candidate in 70 cases (i.e., 91.3% correctly located). In comparison, the VON
Similo LLM approach (i.e., use an LLM to identify the best candidate among
the ten provided by VON Similo) only failed in 40 cases (i.e., 95.0% correctly
located). Thus, resulting in a 42.9 percent reduction of not-located web elements
when using VON Similo LLM.

188
Improving Web Element Localization by Using a Large Language

Model

Figure 7.6: Venn diagram containing the number of correctly located candidates
(i.e., web elements) for each approach.

The Venn diagram in Figure 7.6 shows the number of located web elements
by VON Similo and VON Similo LLM. Both approaches located 724 of the
correct candidates. The VON Similo LLM approach located 40 candidates that
VON Similo did not locate, and VON Similo located ten candidates that VON
Similo LLM failed to locate.

Because we instructed the LLM to only provide a widget id as output and
no motivation, in this experiment, it is impossible to analyze why VON Similo
LLM did not find the ten cases VON Similo found (further elaborated on in
Section 4.6).

To summarize, for what concerns research question RQ1, using the VON
Similo LLM approach instead of the conventional VON Similo algorithm, we
reduced the number of not located candidates from 70 to 40 cases, i.e., 42.9
percent.

7.6.2 RQ2 - Efficiency
The Time/localization column in Table 7.4 shows the average time in millisec-
onds to locate one candidate using both approaches (29 vs. 1934 ms). Also,
within parentheses, the standard deviation is included for the VON Similo LLM
approach (537 ms). We were unable to measure the standard deviation of the
VON Similo approach due to the lack of precision (i.e., we could only measure

7.6 Results 189

Figure 7.7: Motivations from the LLM classified as codes.

whole milliseconds). As expected, the performance of the VON Similo algo-
rithm is much higher (i.e., almost two magnitudes lower execution time) than
the VON Similo LLM approach due to the slow response time of the GPT-4
API.

To summarize research question RQ2, the performance of the LLM approach
at the time of writing is almost two magnitudes slower than the conventional
algorithm due to the long response time from the GPT-4 API (i.e., around
2 seconds on average). While we cannot generalize this result to all LLM
solutions, it gives insights into a snapshot of the order of magnitude of time
required when we conducted this study.

7.6.3 RQ3 - What main aspects does a large language
model use when comparing similar web elements
when a conventional approach struggles?

Figure 7.7 shows the results from our qualitative content analysis of the 428
motivations provided by GPT-4 for all the 70 cases (i.e., six motivations per
case, on average) when VON Similo could not identify the correct candidate.
We provided motivations for selecting the cases where VON Similo failed in
Section 7.5.6.

We defined three categories of motivations before the analysis (see Section
7.5.6) to be able to evaluate how frequently GPT-4 incorporates either of the

190
Improving Web Element Localization by Using a Large Language

Model

aspects; comparison operator, semantic understanding, or context awareness, in
its motivations:

• Comparison operator: Motivation based on conventional comparison
operators (e.g., equals, Euclidean distance, Levenshtein distance). Hence,
the only category that the VON Similo approach uses to identify elements.

• Semantic understanding: Motivation based on semantic understand-
ing. Semantic understanding refers to interpreting the meaning of infor-
mation within its context. It involves understanding the relationships be-
tween words, sentences, and concepts and the intended or implied meaning
behind them.

• Context awareness: Motivation based on context awareness. Context
awareness refers to the capability to perceive and understand the situa-
tional context (e.g. layout and positioning of elements in web applications,
in our case).

We categorized 202 motivations (i.e., 47%) to be associated with context
awareness, 72 motivations (i.e., 17%) to be associated with semantic under-
standing, and 154 motivations (i.e., 36%) to be associated with the use of some
form of conventional comparison operation (e.g., equals). Some motivations
could belong to more than one category. In those cases, we sorted the moti-
vation into the nearest category (i.e., the most appropriate according to the
authors). We did not encounter any motivations leading us to refine existing,
or add new, categories while performing the analysis. Table 7.5 contains ex-
amples of motivations returned from GPT-4, categorized as associated with the
comparison operator, semantic understanding, or context awareness. Half of
the motivations were gathered from the first prompt responses, while the re-
maining examples were manually selected to show some alternate or interesting
motivations. When comparing motivations from GPT-4 when it was correct or
incorrect (i.e., selected the correct candidate according to the oracle), we did
not find any pattern in the motivations that would indicate when it was more
or less confident of the selection of the most similar candidate.

To summarize research question RQ3, the result indicates that the LLM
mainly uses context awareness or semantic understanding (64% of the time)
rather than relying on some form of comparison operation (i.e., like a con-
ventional, non-AI algorithm) in more complex cases where a conventional
approach failed.

7.6 Results 191

Table 7.5: Example motivations from GPT-4 classified as comparison operator,
semantic understanding, or context awareness.

Examples that indicate
that Comparison operator
is used to find the target

Examples that indicate
that Semantic under-
standing is used to find
the target

Examples that indicate
that Context awareness is
used to find the target

The ’location’ attribute in
both elements is the same:
"20,20".

The text "Upgrade to pre-
mium" in the element with
widget_id "8817" is closely
related to the text "Get pre-
mium" in the given element.

The ’location’ attribute in-
dicates that they might be
far apart in the layout of
the website, but the ’neigh-
bor_text’ attribute has some
overlapping words (e.g., "spo-
tify", "support", "download",
"premium").

Both elements have "span" as
one of their ’tag’ attribute.

The text "Beauty, Health &
Hair" in the element with
widget_id "201" is closely re-
lated to the text "Health &
Beauty" in the given element.

The ’location’, ’shape’,
’is_button’, and ’neigh-
bor_text’ attributes in both
elements have similar values,
indicating that they might
be close to each other on the
layout of the website and
have a similar structure.

Both elements have "a" or
"span" as their ’tag’ attribute.

The text "Sign up" in the el-
ement with widget_id "8065"
is closely related to the text
"Log in" in the given element,
as both texts are related to
account actions.

Although the given element
has an ’href’ attribute and
the element with widget_id
"201" does not, this could be a
minor change during the evo-
lution of the web application,
and the overall similarity of
other attributes makes it the
best candidate.

The ’class’ attribute values
in both elements are very
similar, containing "nav-logo-
base" and "nav-sprite".

The text "Order Status" in
the element with widget_id
"1823" is not exactly the same
as the text "Shopping His-
tory" in the given element,
but both texts are related to
account and order informa-
tion, which leads to the as-
sumption that they are sim-
ilar in purpose.

Both elements have a similar
’location’ attribute, indicat-
ing that they might be close
to each other on the layout of
the website.

192
Improving Web Element Localization by Using a Large Language

Model

Table 7.6: Example motivations continued.

Examples that indicate
that Comparison operator
is used to find the target

Examples that indicate
that Semantic under-
standing is used to find
the target

Examples that indicate
that Context awareness is
used to find the target

The ’href’ attribute in both
elements is the same, as they
both point to the same URL
("https://www.cnn.com/us").

The text "Account" in the el-
ement with widget_id "1815"
is not exactly the same
as "Store Locator" in the
given element, but there’s
no other candidates with the
text "Store Locator". In this
case, "Account" may repre-
sent a location-related func-
tionality.

Both elements have relatively
large ’area’ and ’shape’ at-
tributes, suggesting that they
are both prominent elements
on the webpage.

The text "Enterprise" is ex-
actly the same in both ele-
ments.

The text "Start your free
trial" in the element with wid-
get_id "3214" is closely re-
lated to the text "Try free for
30 days" in the given element.

Both elements have a similar
’location’ attribute with only
a minor difference in the x co-
ordinate, indicating that they
are situated near each other
on the layout of the website.

The ’id’ attribute in both el-
ements is the same: "hero-
banner-get-office-link".

The text "Support" in the ele-
ment with widget_id "10880"
is closely related to the text
"Help" in the given element.
Both serve the same purpose
of assisting users with issues
or questions.

Despite some differences in
’xpath’, both elements seem
to be part of the navigation
menu, as suggested by the
’neighbor_text’ attribute.

The text "Find jobs" in the el-
ement with widget_id "7973"
is identical to the text "Find
Jobs" in the given element.

The ’neighbor_text’ at-
tribute is similar in both
elements, with both men-
tioning social platforms
like "twitter", "instagram",
"snapchat", "youtube", and
"the espn daily podcast".

The text "Items in cart" in
the given element is related
to the functionality of a shop-
ping cart, and the element
with widget_id "12341" also
has a cart-related functional-
ity, although the text is not
present.

Both elements share
the same ’href’ at-
tribute, which points to
"https://www.instructure.com/".

The text "Claims Support" in
the element with widget_id
"11882" is closely related to
the text "Delivery Issues" in
the given element, as both
deal with issues regarding de-
liveries.

The ’xpath’ and ’neigh-
bor_text’ attributes also
show similarities, suggesting
that they are part of the
same group of links within
the footer of the website.

The text "Cart" is present in
both elements.

The text "Plans & Pricing" in
the element with widget_id
"13858" is closely related to
the text "PLANS" in the
given element.

Although the ’href’ attribute
is different, the change could
be due to the updated web
application using a different
method to handle account
sign-in functionality.

7.7 Discussion 193

7.7 Discussion
LLMs with human-like abilities such as semantic understanding and context
awareness have the potential to increase the effectiveness of identifying web
elements. Instead of just comparing attributes and other properties (i.e., like
a conventional algorithm), LLMs can relate to the meaning of neighbor texts,
understand the purpose of an element, and evaluate the structure (i.e., both
the DOM and visually in terms of layout and element placement) to make
more informed decisions when comparing and identifying web elements. One
example is the following motivation from the LLM: "The ’location’ attribute
indicates that they might be far apart in the layout of the website, but the
’neighbor_text’ attribute has some overlapping words (e.g., ’spotify’, ’support’,
’download’, ’premium’.)". This and the following examples can be found in
Table 7.5. LLMs recognize common patterns such as menus, forms, footers, or
groups and use this contextual information to refine the identification process.
For example, the LLM motivated one decision with the text: "The ’xpath’
and ’neighbor_text’ attributes also show similarities, suggesting that they are
part of the same group of links within the footer of the website.". Another
example is: "Despite some differences in ’xpath’, both elements seem to be part
of the navigation menu, as suggested by the ’neighbor_text’ attribute.". With
almost human-like abilities when identifying web elements, LLMs can reduce the
need for manual intervention and script maintenance in tools and frameworks
for web-based test automation. More reliable test scripts save time for the
human testers, who can focus on more meaningful tasks like test strategies and
exploratory testing.

There is also a downside to utilizing GPT-4 (i.e., the LLM used in our ex-
periment) for web element identification. API requests are very slow today
compared to a conventional algorithm like VON Similo. We measured the aver-
age API request to be around two seconds, which would result in a noticeable
delay even in an automated GUI script (i.e., that, in turn, is very slow com-
pared to Unit tests). Although we expect future advancements of GPT and
other LLMs to become faster, there might always be some delay that would
affect the execution time of the automated test script in a noticeable way.

Using GPT-4 also comes with a cost in terms of a fee charged by OpenAI for
utilizing the API. The cost is not easy to grasp since it is based on the number of
tokens sent between the client and server. According to our measurements, see
Table 7.4, the cost is not negligible ($36 for 804 prompts, i.e., $0.045 per prompt)
and needs to be taken into consideration when evaluating if the price of using
the API (i.e., runtime cost) is lower than the expected reduction in maintenance

194
Improving Web Element Localization by Using a Large Language

Model

cost. Such a calculation is complicated due to the many variables that affect
the maintenance cost (e.g., software maturity, time between releases, number
of test cases, size of the test cases, and the salary of developers). However,
assuming a test suite with an average maintenance time of 110 minutes per
test case between two major versions, 47 localizations on average per test case,
and an estimated cost of 100 dollars per hour for an employee (as reported in
Alégroth et al. [27]), the LLM approach would likely provide a positive return on
investment in just one software release cycle. The cost of test case maintenance
would be: 100 * (110 / 60) = $183, and the cost of using the GPT-4 API would
be: 47 * 0.045 = $2. Since the cost of utilizing the GPT-4 API is negligible
compared to the manual maintenance cost, the additional robustness gained by
the LLM approach would likely be more valuable. Assuming the same increase
in robustness as in our results (40 vs. 70 not located), the maintenance cost
would be reduced to: 183 * (40 / 70) = $105. Even though the calculations
are based on industrial data, they only provide an indication since salaries for
engineers differ globally.

However, the cost and payment plans will likely also change over time. There
may even be adequate LLMs that are entirely free or that you can install locally,
eliminating, at least, the cost aspect. A locally installed LLM would probably
also impact the performance but may not eliminate the problem that the API
request delay has a noticeable effect on the test execution. That GPT-3.5-turbo
is considerably faster than GPT-3 is also an indication that we might expect to
see a turbo version of GPT-4 in the future.

Since LLMs are based on artificial neural networks (ANNs) [79], we can only
assume that the motivations provided by the LLM have anything to do with the
candidate selected since a large ANN can be seen as a black box model (i.e., with
inputs and outputs) that we cannot fully comprehend due to the complexity of
the network. Ongoing discussion exists about whether LLMs are probabilistic
models or if they truly learn to understand the world [116, 139, 165].

In summary, LLMs can be used to further improve web element localization
due to their assumed semantic understanding and context awareness with the
drawbacks of slower test execution and the cost of using the API. However, more
research is needed to fully grasp the potential and shortcomings of using LLMs
for web element identification and if the models actually possess knowledge
about context and semantics.

7.8 Threats to Validity 195

7.8 Threats to Validity
To reduce the internal validity threat, we limited the influence of the selection
of web elements on our experiment by selecting specific categories of web ele-
ments that could be used for actions, assertions, or synchronization and that
were available on both versions of the website’s homepage. As we focused on
investigating the web element finding ability only, we do not believe that the
possibility that elements on the homepage differ significantly from other web
elements is a substantial threat.

The choice of applications and versions analyzed in the study may compro-
mise its external validity. To address this issue, we opted to focus on the top 48
sites based on Alexa.com rankings, as we have no control over the websites listed
on that site. Additionally, the version of a website can impact the number of
failed localization attempts, mainly since longer intervals between releases often
result in more changes. To mitigate this concern, we selected the same interval
(one to five years) for website versions as previous studies conducted by Leotta
et al. [99] and Nass et al. [122].

The construct validity is low since the time between releases (i.e., between 12
to 60 months) should be compared with a typical case in the industry. However,
industrial cases differ a lot. Some test suites are run every time the source code
is updated (i.e., several times per day), while some test suites are run with
months in between. We decided to prioritize getting some changes (i.e., both
larger and smaller) by picking a greater period between releases to reduce the
risk of not finding any changes at all.

That we selected to use GPT-4 from OpenAI in favor of some other LLM can
impact the construct validity since choosing a different LLM would likely give
a different result. We tried to mitigate this threat by motivating our selection
of LLM when focusing on effectiveness before efficiency and cost. Also, future
LLM versions will likely be even more capable, making this study merely a
baseline for the future.

Limiting the number of candidates to ten was made to prevent the prompt
from exceeding the quota and reduce the API’s runtime cost. However, this
design choice leads to 13 cases where none of the top ten candidates are correct,
resulting in inevitable failure for the LLM. This threat to validity arises be-
cause the chosen constraint on the number of candidates potentially restricts the
LLM’s ability to provide accurate responses. By limiting the available options,
the experiment does not fully assess the LLM’s ability to generate appropriate
and correct responses. This limitation could lead to an underestimation of the
LLM’s performance, as it may have the potential to generate correct responses

196
Improving Web Element Localization by Using a Large Language

Model

beyond the limited set of candidates. An alternative approach to mitigating
this threat would have been to increase the number of candidates to 20, which
would have included additional correct candidates in the top 10. However, con-
cerns about the impact on prompt size and cost led to the decision against this
option.

7.9 Related Work
In practical terms, two categories of methodologies have emerged, each possess-
ing contrasting yet non-contradictory characteristics: post-repair approaches
that address locator failures by employing remedial measures and more preven-
tive strategies that focus on generating resilient locators. Only a few of the
current algorithms and approaches utilize natural-language processing (NLM)
or large language models (LLMs). This Section covers them both, emphasizing
the ones taking advantage of LLM or NLM.

7.9.1 Post-repair approaches

This category of approaches aims to automatically repair the automated test
execution or script after a failure has occurred (i.e., post-execution). Automatic
repair reduces the costly manual labor of repairing test cases or scripts and has
been researched by many, e.g., [49, 75, 86].

Khaliq et al. [84] proposed a novel automated GUI testing approach using a
sequence-to-sequence transformer model in GPT-2, which perceives the appli-
cation state through element classification and generates test flows in English.
Their model aims to repair flaky tests when the GUI is modified and automati-
cally generate new test flows for regression without manual intervention. They
showed that abstract English test flows could be converted into executable test
scripts using a simple parser.

A more conventional approach (i.e., non-AI), named WATER, proposed by
Choudhary et al. [49], compares the test execution on two software versions,
one where the test succeeds and one when it fails. In common with Similo
(and VON Similo), WATER uses weighted locator parameters when repairing a
broken locator. The WATER approach is, however, a post-repair technique and
utilizes an entirely different set of locator parameters than Similo (i.e., XPath,
coord, clickable, visible, index, and hash) that are compared using equality or
Levenshtein distance [8].

7.9 Related Work 197

Another post-repair tool is WATERFALL [75]. WATERFALL is an advance-
ment on WATER and uses the same heuristics for repairs but can improve the
effectiveness of script repair (by 209%) by taking advantage of the knowledge
that minor versions occur between major versions in software releases.

COLOR, proposed by Kirinuki et al. [86], is another approach that uses
several attributes, positions, images, and other properties to suggest a repair.
Their experiments show that COLOR can be more effective than WATER (es-
pecially concerning more complex changes, like switching from one web page
to another) and that the algorithm can identify the repair with 77% to 93%
accuracy.

Repairing broken locators utilizing a DOM tree comparing algorithm is an
approach presented by Brisset et al. [42]. They compared their tool, Erratum,
with WATER and found that it has 67% higher accuracy.

Grechanik et al. [70, 163] proposed GUIDE, a tool for a non-intrusive,
platform-, and language-independent repair algorithm for web applications by
identifying changes occurring between two released software versions. The tool
can be used for suggesting repairs or providing guidance for test planning.

7.9.2 Resilient locators
Resilient (i.e., robust) locators in GUI test automation refer to the challenge of
reliably identifying and interacting with GUI elements during automated test-
ing. Changes in GUI layout and dynamic content can cause locators to fail,
leading to test script failures. Researchers aim to develop techniques for gen-
erating robust locators tolerant to GUI changes, ensuring efficient and reliable
test automation. Many approaches have been proposed seeking to mitigate this
problem in the literature.

A study by Kirinuki et al. attempts to solve the locator maintenance problem
by not relying on attributes and the structure of the DOM and instead leverages
NLP with heuristic search to identify web elements in web pages from natural-
language-like test cases [85]. An example of such a test step could be: enter
’admin’ in ’username’. Evaluation of three open-source web applications showed
a success rate of 94% in identifying web elements and correct identification in
68% of the test cases.

Another interesting approach that takes advantage of GPT (i.e., GPT-3 in
this case) while avoiding the shortcomings of a traditional test script is GPT-
Droid, proposed by Zhe Liu et al. [106]. Utilizing the strengths of ChatGPT
(i.e., understanding human knowledge), they formulate test steps in plain En-
glish and pass the GUI page content to the LLM. Next, the LLM responds

198
Improving Web Element Localization by Using a Large Language

Model

with an instruction about what step to do next when asked: ’What operation
is required?’.

Zhe Liu et al. also proposed to use the power of an LLM to automatically
generate more realistic test scenarios that can interact with a GUI application
more similar to a human tester, for example, fill out forms with suitable con-
tent that makes it possible to progress to the next step. Their tool QTypist,
can generate text input related to the GUI context and semantic requirement,
thereby enabling better test coverage [105].

CrawLabel is a test-generation tool (a plugin for Crawljax) that utilizes
grammar learning (i.e., NLP) to perform unsupervised end-to-end testing of
web applications [104].

Among the more traditional algorithms (i.e., not utilizing some form of AI),
we need to mention the approaches (i.e., Similo and VON Similo) we aim to
advance in this paper. The different Similo approaches are covered, in detail, in
Section 7.3.

Several approaches attempt to create robust XPath locators. The algorithm
proposed by Montoto et al. [117] is one of them and uses a bottom-up strategy
to generate a change-resilient XPath locator iteratively. Starting from a simple
XPath expression, the algorithm concatenates sub-expressions until the result-
ing XPath can uniquely identify the target element. If the resulting XPath is
not unique, the attribute values of the ancestors are considered until the root is
reached.

Other approaches that generate robust XPaths are ROBULA [98] and ROB-
ULA+ [100], proposed by Leotta et al. ROBULA+ improves upon the earlier
ROBULA algorithm and is often considered state-of-the-art in generating re-
silient XPath locators for web applications. The idea behind ROBULA+ is to
generate a short but robust locator as possible, given the content of the web page
and heuristics about the robustness of various attributes. ROBULA and ROB-
ULA+ begin with a generic XPath that selects all the nodes in the DOM (i.e.,
similar to the Montoto approach). Next, the algorithms refine the XPath, using
a set of transformations or prioritizations until only one element is selected.

While some solutions aim to increase the resilience of XPath locators (e.g.,
ROBULA+ and Montoto), other approaches increase the number of informa-
tion sources (e.g., attributes and other properties), thereby introducing voting
mechanisms or triangulation when identifying the target web element. The
multi-locator, proposed by Leotta et al., is an example that takes advantage of
several locators (i.e., with diverse strengths and weaknesses) and uses a voting
procedure to select the best candidate web element (i.e., the top-voted one) [99].

7.9 Related Work 199

Another interesting approach, ATA-QV, proposed by Yandrapally et al.
[166], is to take advantage of neighboring web elements instead of only relying
on attributes and properties of each web element. We can use the information
extracted from neighbor web elements to triangulate the location of the target
web element. For example, assume we have a text field with a label describing
the text field on the left and a button on the right side. Even if the attributes
and properties of the text field change entirely from one version to the other, it
might still be possible to find it by utilizing the label on the left side and the
button’s caption on the right side. ATA-QV is an improvement to the technique
and tool called ATA proposed by Thummalapenta et al. [151]. ATA is a com-
mercial tool that was developed in collaboration with IBM that aims to increase
the resilience of locators by relying more on labels (i.e., visual attributes) than
the DOM structure.

Nguyen et al. recently suggested an approach that can generate resilient
locators by using a new way of constructing XPaths that relies on semantic
structures and neighbor web elements and a rule-based method for selecting the
best (i.e., most robust) one [129].

SIDEREAL is a tool for automated end-to-end (E2E) testing of web appli-
cations [97]. It addresses the problem of broken locators by using a statistical
adaptive algorithm that learns the potential fragility of web element properties
to generate robust XPath locators. Compared to the baselines (i.e., ROBULA+
and Montoto), SIDEREAL significantly reduces the number of broken locators,
resulting in more reliable E2E testing for web applications.

There are also some commercial products that can learn and adapt their
web element localization from existing applications or application versions, like
Testitm 2 and Ranorex 3.

The Similo approach combines many of the techniques of these related works.
For example, Similo utilizes multiple sources of information like the multi-
locator approach by Leotta et al. and triangulating using neighbor web elements
like the ATA-QV approach by Yandrapally et al. [166].

VON Similo LLM enhances standard Similo by adding a semantic under-
standing of attributes (e.g., the caption) in web elements like the approaches
proposed by Kirinuki et al. and Zhe Liu et al. [106]. However, VON Similo
LLM goes beyond the semantic understanding of web elements since GPT-4
displays some form of context awareness by relating to the possible use of web

2https://www.testim.io/blog/why-testim/
3https://www.ranorex.com/blog/machine-trained-algorithm/

200
Improving Web Element Localization by Using a Large Language

Model

elements in a web page or application, taking it even further than the ATA-QV
approach by Yandrapally et al. [166].

7.10 Conclusions
Accurate web element localization is crucial for robust automated scripts in
web-based test automation. Traditional approaches lack semantic understand-
ing and context awareness. The emergence of Large Language Models (LLMs)
like GPT-4 offers human-like abilities that can enhance web element identifi-
cation. This study highlights the potential benefits (but also challenges) of
using LLMs for web element localization in an automated GUI test case. Our
results show that LLMs can be employed to understand the purpose of ele-
ments, analyze neighboring text, and evaluate web page structures, enabling
more accurate localizations. They can reduce manual intervention and script
maintenance, freeing human testers’ time for more meaningful tasks. However,
using LLMs through APIs like GPT-4 introduces delays in test execution due to
long response times. The cost of utilizing the API is another factor to consider,
as it can be significant and needs to be weighed against the expected reduction
in maintenance costs. Future advancements and alternatives, such as locally
installed LLMs, may address these concerns. Overall, further research is nec-
essary to fully understand the potential and limitations of using LLMs for web
element identification.

7.11 Future Work
Even though the VON Similo LLM approach exceeds a 95% success rate when
locating the correct candidate, there are still almost 5% to a perfect result. Still,
we do not know how the approach compares to humans since they might not
reach 100% success either. However, we expect LLMs to become even more
capable in the future. They will also likely support more extensive prompt
length (i.e., more tokens), become faster (i.e., lower response times), and the
cost of using the APIs will decrease.

As a next step, we envision an approach that only relies on an LLM without
needing a conventional algorithm to narrow down the number of candidates (e.g.,
VON Similo) that have the potential to enhance the effectiveness of web element
localization further. Such an approach could employ tournament selection [41]
where all the visual web element candidates extracted from a web page attend,

7.11 Future Work 201

and the tournament winner is the selected candidate. For example, assume
200 visual web elements extracted from a web page. First, we divide the 200
candidates into ten groups of 20 candidates each. The winner of each group will
attend the final that selects the most similar candidate on the web page. Our
reasons for not trying such an approach today are: (1) a tournament would take
a long time to complete since it requires many API requests, and (2) the cost
would be high since the prompts will contain information gathered from all the
web elements on the web page. However, as advancements in LLM technology
continue and API efficiency improves, the viability of such an approach may
increase, making it promising for future exploration.

Another possible improvement is to provide the LLM with more information
about the candidates to compare. One such example could be a representation
of the pictorial user interface (i.e., pixels) since that type of information is
available to the human eye. We decided to leave that out of our experiments
since gathering and processing images from all visible images is likely time-
consuming. Also, there are many ways of processing and analyzing images, and
exploring the alternatives would take lots of resources and time.

Instead of just asking the LLM once (i.e., one input returns one output) as in
our experiment, we could employ other frameworks such as Chain of Thoughts
(CoT) or Three Of Thoughts (ToT) that try to improve the results using a
process of exploration of thoughts and self-evaluation [167]. The drawback is,
again, that more prompts increase the time and cost of using the API.

A possible way of increasing the efficiency and reducing the cost is to use
VON Similo in cases when we expect it to be correct (i.e., a high probability)
and only take advantage of the LLM in other cases. This approach involves com-
paring the similarity score of the highest-ranked candidate with the remaining
candidates to determine if it stands out as an outlier (i.e., clearly separated
from the rest). If a clear separation is detected, the top-ranked candidate from
VON Similo is chosen as the result. However, if no outlier is identified, the LLM
is employed to decide among the top ten (or more) candidates. This approach
optimizes efficiency and cost by using the most appropriate model based on the
probability of correctness and the distinctiveness of the top-ranked candidate.
The challenge with this approach is that imperfect detection of the outlier has a
negative impact on the effectiveness since the LLM will not get the opportunity
to find a better candidate.

The GPT API (all versions) is today provided as a cloud service. One poten-
tial drawback of utilizing a cloud service is the inherent security risks associated
with transmitting sensitive data to remote servers outside the company domain.
Relying on a third-party cloud provider might be a reason for not taking ad-

202
Improving Web Element Localization by Using a Large Language

Model

vantage of the benefits an LLM can provide regarding script robustness due to
the possible security risk. We might be able to solve this risk in the future by
using an LLM that is powerful enough, and that can be locally installed, thus
avoiding a cloud service.

7.12 Acknowledgements
This work was supported by the KKS foundation through the S.E.R.T. Research
Profile project at Blekinge Institute of Technology. Robert Feldt has also been
supported by the Swedish Scientific Council (No. 2015-04913, ‘Basing Software
Testing on Information Theory’).

References

[1] Alexa. https://www.alexa.com/topsites/countries/US.

[2] Angular. https://angular.io.

[3] Css selectors. https://en.wikipedia.org/wiki/CSS.

[4] Dom. https://www.w3.org/TR/WD-DOM/introduction.html.

[5] Eggplant. https://www.eggplantsoftware.com.

[6] Github. https://github.com/SeleniumHQ/selenium-ide.

[7] Internet archive. https://web.archive.org/.

[8] Levenshtein. http://levenshtein.net.

[9] Protractor. https://www.protractortest.org.

[10] Replication package. http://www.michelnass.com/resources/
WidgetLocator.zip.

[11] Selenium. https://www.seleniumhq.org.

[12] Selenium ide. https://www.selenium.dev/selenium-ide.

[13] The v-model. https://en.wikipedia.org/wiki/V-Model_(software_
development).

[14] Wikipedia. https://www.wikipedia.org.

[15] Xpath. https://en.wikipedia.org/wiki/XPath.

[16] Replication package, 2023. https://github.com/michelnass/SimiloLLM.

https://www.alexa.com/topsites/countries/US
https://angular.io
https://en.wikipedia.org/wiki/CSS
https://www.w3.org/TR/WD-DOM/introduction.html
https://www.eggplantsoftware.com
https://github.com/SeleniumHQ/selenium-ide
https://web.archive.org/
http://levenshtein.net
https://www.protractortest.org
http://www.michelnass.com/resources/WidgetLocator.zip
http://www.michelnass.com/resources/WidgetLocator.zip
https://www.seleniumhq.org
https://www.selenium.dev/selenium-ide
https://en.wikipedia.org/wiki/V-Model_(software_development)
https://en.wikipedia.org/wiki/V-Model_(software_development)
https://www.wikipedia.org
https://en.wikipedia.org/wiki/XPath

204 REFERENCES

[17] Adamoli, A., Zaparanuks, D., Jovic, M., and Hauswirth, M. Au-
tomated gui performance testing. Software Quality Journal 19, 4 (2011),
801–839.

[18] Afzal, W., Ghazi, A. N., Itkonen, J., Torkar, R., Andrews, A.,
and Bhatti, K. An experiment on the effectiveness and efficiency of
exploratory testing. Empirical Software Engineering 20, 3 (2015), 844–
878.

[19] Aho, P., Suarez, M., Kanstrén, T., and Memon, A. M. Murphy
tools: Utilizing extracted gui models for industrial software testing. In
Software Testing, Verification and Validation Workshops (ICSTW), 2014
IEEE Seventh International Conference on (2014), IEEE, pp. 343–348.

[20] Aho, P., and Vos, T. Challenges in automated testing through graph-
ical user interface. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW) (2018), IEEE,
pp. 118–121.

[21] Aldalur, I., and Diaz, O. Addressing web locator fragility: a case for
browser extensions. In Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (2017), pp. 45–50.

[22] Aldalur, I., Larrinaga, F., and Perez, A. Abla: An algorithm for
repairing structure-based locators through attribute annotations. In In-
ternational Conference on Web Information Systems Engineering (2020),
Springer, pp. 101–113.

[23] Alégroth, E. Visual GUI Testing: Automating High-level Software Test-
ing in Industrial Practice. Chalmers University of Technology, 2015.

[24] Alégroth, E. Visual gui testing: Automating high-level software testing
in industrial practice. Chalmers University of Technology, 2015.

[25] Alégroth, E., Bache, G., and Bache, E. On the industrial ap-
plicability of texttest: An empirical case study. In 2015 IEEE 8th In-
ternational Conference on Software Testing, Verification and Validation
(ICST) (2015), IEEE, pp. 1–10.

[26] Alégroth, E., and Feldt, R. On the long-term use of visual gui testing
in industrial practice: a case study. Empirical Software Engineering 22, 6
(2017), 2937–2971.

REFERENCES 205

[27] Alégroth, E., Feldt, R., and Kolström, P. Maintenance of auto-
mated test suites in industry: An empirical study on visual gui testing.
Information and Software Technology 73 (2016), 66–80.

[28] Alégroth, E., Feldt, R., and Olsson, H. H. Transitioning manual
system test suites to automated testing: An industrial case study. In 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation (2013), IEEE, pp. 56–65.

[29] Alégroth, E., Gao, Z., Oliveira, R., and Memon, A. Conceptual-
ization and evaluation of component-based testing unified with visual gui
testing: an empirical study. In 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST) (2015), IEEE,
pp. 1–10.

[30] Alégroth, E., Karlsson, A., and Radway, A. Continuous integra-
tion and visual gui testing: Benefits and drawbacks in industrial practice.
In Software Testing, Verification and Validation (ICST), 2018 IEEE 11th
International Conference on (2018), IEEE, pp. 172–181.

[31] Alégroth, E., Nass, M., and Olsson, H. H. Jautomate: A tool
for system-and acceptance-test automation. In 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation (2013),
IEEE, pp. 439–446.

[32] Ali, M., and Elish, M. O. A comparative literature survey of design
patterns impact on software quality. In 2013 international conference on
information science and applications (ICISA) (2013), IEEE, pp. 1–7.

[33] Amalfitano, D., Riccio, V., Amatucci, N., De Simone, V., and
Fasolino, A. R. Combining automated gui exploration of android apps
with capture and replay through machine learning. Information and Soft-
ware Technology 105 (2019), 95–116.

[34] Anand, T., Reddy, C., and Mani, V. System testing optimization in
a globally distributed software engineering team. In 2016 IEEE 11th In-
ternational Conference on Global Software Engineering (ICGSE) (2016),
IEEE, pp. 99–103.

[35] Arlt, S., Bertolini, C., and Schäf, M. Behind the scenes: an ap-
proach to incorporate context in gui test case generation. In 2011 IEEE

206 REFERENCES

Fourth International Conference on Software Testing, Verification and
Validation Workshops (2011), IEEE, pp. 222–231.

[36] Arlt, S., Podelski, A., and Wehrle, M. Reducing gui test suites via
program slicing. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (2014), ACM, pp. 270–281.

[37] Bauersfeld, S., Vos, T. E., Condori-Fernandez, N., Bagnato,
A., and Brosse, E. Evaluating the testar tool in an industrial case
study. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (2014), ACM, p. 4.

[38] Benavoli, A., Corani, G., Demšar, J., and Zaffalon, M. Time for
a change: a tutorial for comparing multiple classifiers through bayesian
analysis. The Journal of Machine Learning Research 18, 1 (2017), 2653–
2688.

[39] Berner, S., Weber, R., and Keller, R. K. Observations and lessons
learned from automated testing. In Proceedings of the 27th international
conference on Software engineering (2005), ACM, pp. 571–579.

[40] Bertram, D. Likert scales. Retrieved November 2 (2007), 2013.

[41] Blickle, T., and Thiele, L. A mathematical analysis of tournament
selection. In ICGA (1995), vol. 95, Citeseer, pp. 9–15.

[42] Brisset, S., Rouvoy, R., Seinturier, L., and Pawlak, R. Erra-
tum: Leveraging flexible tree matching to repair broken locators in web
automation scripts. Information and Software Technology 144 (2022),
106754.

[43] Brooks, F., and Kugler, H. No silver bullet. April, 1987.

[44] Bruns, A., Kornstadt, A., and Wichmann, D. Web application
tests with selenium. IEEE software 26, 5 (2009), 88–91.

[45] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg,
S., et al. Sparks of artificial general intelligence: Early experiments with
gpt-4. arXiv preprint arXiv:2303.12712 (2023).

REFERENCES 207

[46] Campos, J. C., Fayollas, C., Gonçalves, M., Martinie, C.,
Navarre, D., Palanque, P., and Pinto, M. A more intelligent test
case generation approach through task models manipulation. Proceedings
of the ACM on Human-Computer Interaction 1, EICS (2017), 9.

[47] Chang, T.-H., Yeh, T., and Miller, R. C. Gui testing using com-
puter vision. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2010), ACM, pp. 1535–1544.

[48] Cheng, Y.-P., Li, C.-W., and Chen, Y.-C. Apply computer vision in
gui automation for industrial applications. Mathematical biosciences and
engineering: MBE 16, 6 (2019), 7526–7545.

[49] Choudhary, S. R., Zhao, D., Versee, H., and Orso, A. Water:
Web application test repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering (2011), pp. 24–29.

[50] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G.,
Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann,
S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311 (2022).

[51] Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S.,
and Amodei, D. Deep reinforcement learning from human preferences.
Advances in neural information processing systems 30 (2017).

[52] Cohn, M. Succeeding with agile: software development using Scrum.
Pearson Education, 2010.

[53] Coppola, R., Morisio, M., and Torchiano, M. Mobile gui testing
fragility: a study on open-source android applications. IEEE Transactions
on Reliability 68, 1 (2018), 67–90.

[54] Cruzes, D. S., and Dyba, T. Recommended steps for thematic synthe-
sis in software engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement (2011), IEEE, pp. 275–284.

[55] de Cleva Farto, G., and Endo, A. T. Reuse of model-based tests in
mobile apps. In Proceedings of the 31st Brazilian Symposium on Software
Engineering (2017), ACM, pp. 184–193.

208 REFERENCES

[56] de Gier, F., Kager, D., de Gouw, S., and Vos, E. T. Offline ora-
cles for accessibility evaluation with the testar tool. In 2019 13th Interna-
tional Conference on Research Challenges in Information Science (RCIS)
(2019), IEEE, pp. 1–12.

[57] Debroy, V., Brimble, L., Yost, M., and Erry, A. Automating web
application testing from the ground up: Experiences and lessons learned
in an industrial setting. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST) (2018), IEEE,
pp. 354–362.

[58] Dobslaw, F., Feldt, R., Michaëlsson, D., Haar, P.,
de Oliveira Neto, F. G., and Torkar, R. Estimating return on
investment for gui test automation frameworks. In 2019 IEEE 30th Inter-
national Symposium on Software Reliability Engineering (ISSRE) (2019),
IEEE, pp. 271–282.

[59] Ekman, F., Johannesson, S., Peber, E., Sandberg, C., et al.
Test-driven development: Drawbacks, benefits, industrial usage and com-
plementary methods.

[60] Eladawy, H. M., Mohamed, A. E., and Salem, S. A. A new algo-
rithm for repairing web-locators using optimization techniques. In 2018
13th International Conference on Computer Engineering and Systems (IC-
CES) (2018), IEEE, pp. 327–331.

[61] Engström, E., and Runeson, P. A qualitative survey of regression
testing practices. In International Conference on Product Focused Soft-
ware Process Improvement (2010), Springer, pp. 3–16.

[62] Entin, V., Winder, M., Zhang, B., and Christmann, S. Introducing
model-based testing in an industrial scrum project. In Proceedings of the
7th International Workshop on Automation of Software Test (2012), IEEE
Press, pp. 43–49.

[63] Feldt, R., Kang, S., Yoon, J., and Yoo, S. Towards autonomous
testing agents via conversational large language models. arXiv preprint
arXiv:2306.05152 (2023).

[64] Fleiss, J. L., and Cohen, J. The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability. Educational
and psychological measurement 33, 3 (1973), 613–619.

REFERENCES 209

[65] Furia, C. A., Feldt, R., and Torkar, R. Bayesian data analysis in
empirical software engineering research. IEEE Transactions on Software
Engineering 47, 9 (2019), 1786–1810.

[66] Garousi, V., Afzal, W., Çağlar, A., Işık, İ. B., Baydan, B.,
Çaylak, S., Boyraz, A. Z., Yolaçan, B., and Herkiloğlu, K.
Comparing automated visual gui testing tools: an industrial case study.
In Proceedings of the 8th ACM SIGSOFT International Workshop on Au-
tomated Software Testing (2017), ACM, pp. 21–28.

[67] Garousi, V., and Yildirim, E. Introducing automated gui testing and
observing its benefits: an industrial case study in the context of law-
practice management software. In 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW)
(2018), IEEE, pp. 138–145.

[68] Gill, K. S. Human machine symbiosis: The foundations of human-
centred systems design. Springer Science & Business Media, 2012.

[69] Gorschek, T., Garre, P., Larsson, S., and Wohlin, C. A model
for technology transfer in practice. IEEE software 23, 6 (2006), 88–95.

[70] Grechanik, M., Mao, C. W., Baisal, A., Rosenblum, D., and
Hossain, B. M. Differencing graphical user interfaces. In 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS) (2018), IEEE, pp. 203–214.

[71] Grechanik, M., Xie, Q., and Fu, C. Creating gui testing tools using
accessibility technologies. In Software Testing, Verification and Validation
Workshops, 2009. ICSTW’09. International Conference on (2009), IEEE,
pp. 243–250.

[72] Grechanik, M., Xie, Q., and Fu, C. Experimental assessment of
manual versus tool-based maintenance of gui-directed test scripts. In 2009
IEEE International Conference on Software Maintenance (2009), IEEE,
pp. 9–18.

[73] Grechanik, M., Xie, Q., and Fu, C. Maintaining and evolving gui-
directed test scripts. In Proceedings of the 31st international conference
on software engineering (2009), IEEE Computer Society, pp. 408–418.

210 REFERENCES

[74] Gupta, P., and Surve, P. Model based approach to assist test case cre-
ation, execution, and maintenance for test automation. In Proceedings of
the First International Workshop on End-to-End Test Script Engineering
(2011), ACM, pp. 1–7.

[75] Hammoudi, M., Rothermel, G., and Stocco, A. Waterfall: An
incremental approach for repairing record-replay tests of web applications.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (New York, NY, USA, 2016), FSE
2016, Association for Computing Machinery, p. 751–762.

[76] Heiskanen, H., Jääskeläinen, A., and Katara, M. Debug support
for model-based gui testing. In 2010 Third International Conference on
Software Testing, Verification and Validation (2010), IEEE, pp. 25–34.

[77] Hou, Y., Chen, R., and Du, Z. Automated gui testing for j2me soft-
ware based on fsm. In 2009 International Conference on Scalable Comput-
ing and Communications; Eighth International Conference on Embedded
Computing (2009), IEEE, pp. 341–346.

[78] Huang, S., Cohen, M. B., and Memon, A. M. Repairing gui test
suites using a genetic algorithm. In 2010 Third International Conference
on Software Testing, Verification and Validation (2010), IEEE, pp. 245–
254.

[79] Jain, A. K., Mao, J., and Mohiuddin, K. M. Artificial neural net-
works: A tutorial. Computer 29, 3 (1996), 31–44.

[80] Janicki, M., Katara, M., and Pääkkönen, T. Obstacles and oppor-
tunities in deploying model-based gui testing of mobile software: a survey.
Software Testing, Verification and Reliability 22, 5 (2012), 313–341.

[81] Jiang, W., Li, X., and Wang, X. A black-box based script repair
method for gui regression test. In 2018 7th International Conference on
Digital Home (ICDH) (2018), IEEE, pp. 148–153.

[82] Jorgensen, P. C., and Erickson, C. Object-oriented integration test-
ing. Communications of the ACM 37, 9 (1994), 30–38.

[83] Kaner, C. Exploratory testing. In Quality assurance institute worldwide
annual software testing conference (2006), pp. 1–14.

REFERENCES 211

[84] Khaliq, Z., Farooq, S. U., and Khan, D. A. Transformers for gui
testing: A plausible solution to automated test case generation and flaky
tests. Computer 55, 3 (2022), 64–73.

[85] Kirinuki, H., Matsumoto, S., Higo, Y., and Kusumoto, S. Web el-
ement identification by combining nlp and heuristic search for web testing.
In 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2022), IEEE, pp. 1055–1065.

[86] Kirinuki, H., Tanno, H., and Natsukawa, K. Color: Correct locator
recommender for broken test scripts using various clues in web application.
2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2019), 310–320.

[87] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P.,
Turner, M., Niazi, M., and Linkman, S. Systematic literature re-
views in software engineering–a tertiary study. Information and software
technology 52, 8 (2010), 792–805.

[88] Kitzinger, J., and Barbour, R. Developing focus group research:
politics, theory and practice. Sage, 1999.

[89] Koubaa, A. Gpt-4 vs. gpt-3.5: A concise showdown.

[90] Kresse, A., and Kruse, P. M. Development and maintenance efforts
testing graphical user interfaces: a comparison. In Proceedings of the 7th
International Workshop on Automating Test Case Design, Selection, and
Evaluation (2016), ACM, pp. 52–58.

[91] Kumar, Y., et al. Comparative study of automated testing tools: sele-
nium, soapui, hp unified functional testing and test complete. Journal of
Emerging Tech-nologies and Innovative Research 2, 9 (2015), 42–48.

[92] Landis, J. R., and Koch, G. G. The measurement of observer agree-
ment for categorical data. biometrics (1977), 159–174.

[93] Larivière, V., Pontille, D., and Sugimoto, C. R. Investigating the
division of scientific labor using the contributor roles taxonomy (credit).
Quantitative Science Studies 2, 1 (2021), 111–128.

[94] Laţiu, G. I., Creţ, O., and Văcariu, L. Graphical user interface
testing using evolutionary algorithms. In 2013 8th Iberian Conference on
Information Systems and Technologies (CISTI) (2013), IEEE, pp. 1–6.

212 REFERENCES

[95] Leotta, M., Clerissi, D., Ricca, F., and Spadaro, C. Comparing
the maintainability of selenium webdriver test suites employing different
locators: A case study. In Proceedings of the 2013 International Workshop
on Joining AcadeMiA and Industry Contributions to Testing Automation
(New York, NY, USA, 2013), JAMAICA 2013, Association for Computing
Machinery, p. 53–58.

[96] Leotta, M., Ricca, F., and Tonella, P. Sidereal: Statistical adap-
tive generation of robust locators for web testing. Software Testing, Ver-
ification and Reliability 31, 3 (2021), e1767. e1767 stvr.1767.

[97] Leotta, M., Ricca, F., and Tonella, P. Sidereal: Statistical adap-
tive generation of robust locators for web testing. Software Testing, Ver-
ification and Reliability 31, 3 (2021), e1767.

[98] Leotta, M., Stocco, A., Ricca, F., and Tonella, P. Reducing
web test cases aging by means of robust xpath locators. In 2014 IEEE
International Symposium on Software Reliability Engineering Workshops
(2014), IEEE, pp. 449–454.

[99] Leotta, M., Stocco, A., Ricca, F., and Tonella, P. Using multi-
locators to increase the robustness of web test cases. In Software Testing,
Verification and Validation (ICST), 2015 IEEE 8th International Confer-
ence on (2015), IEEE, pp. 1–10.

[100] Leotta, M., Stocco, A., Ricca, F., and Tonella, P. Robula+: An
algorithm for generating robust xpath locators for web testing. Journal
of Software: Evolution and Process 28, 3 (2016), 177–204.

[101] Leotta, M., Stocco, A., Ricca, F., and Tonella, P. Pesto: Au-
tomated migration of dom-based web tests towards the visual approach.
Software Testing, Verification and Reliability 28, 4 (2018), e1665.

[102] Li, X., Chang, N., Wang, Y., Huang, H., Pei, Y., Wang, L., and
Li, X. Atom: Automatic maintenance of gui test scripts for evolving
mobile applications. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST) (2017), IEEE, pp. 161–171.

[103] Liebel, G., Alégroth, E., and Feldt, R. State-of-practice in gui-
based system and acceptance testing: An industrial multiple-case study. In
2013 39th Euromicro Conference on Software Engineering and Advanced
Applications (2013), IEEE, pp. 17–24.

REFERENCES 213

[104] Liu, Y., Yandrapally, R., Kalia, A. K., Sinha, S., Tzoref-Brill,
R., and Mesbah, A. Crawlabel: computing natural-language labels
for ui test cases. In Proceedings of the 3rd ACM/IEEE International
Conference on Automation of Software Test (2022), pp. 103–114.

[105] Liu, Z., Chen, C., Wang, J., Che, X., Huang, Y., Hu, J., and
Wang, Q. Fill in the blank: Context-aware automated text input gener-
ation for mobile gui testing. arXiv preprint arXiv:2212.04732 (2022).

[106] Liu, Z., Chen, C., Wang, J., Chen, M., Wu, B., Che, X., Wang,
D., and Wang, Q. Chatting with gpt-3 for zero-shot human-like mobile
automated gui testing. arXiv preprint arXiv:2305.09434 (2023).

[107] Luo, L. Software testing techniques. Institute for software research in-
ternational Carnegie mellon university Pittsburgh, PA 15232, 1-19 (2001),
19.

[108] Mahmud, J., Cypher, A., Haber, E., and Lau, T. Design and
industrial evaluation of a tool supporting semi-automated website testing.
Software Testing, Verification and Reliability 24, 1 (2014), 61–82.

[109] Mariani, L., Pezze, M., Riganelli, O., and Santoro, M. Au-
toblacktest: Automatic black-box testing of interactive applications. In
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on (2012), IEEE, pp. 81–90.

[110] Mariani, L., Pezzè, M., Riganelli, O., and Santoro, M. Auto-
matic testing of gui-based applications. Software Testing, Verification and
Reliability 24, 5 (2014), 341–366.

[111] Mariani, L., Pezzè, M., and Zuddas, D. Augusto: Exploiting popular
functionalities for the generation of semantic gui tests with oracles. In
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE) (2018), IEEE, pp. 280–290.

[112] Maxwell, J. A. Qualitative research design: An interactive approach.
Sage publications, 2012.

[113] McMaster, S., and Memon, A. Call-stack coverage for gui test suite
reduction. IEEE Transactions on Software Engineering 34, 1 (2008), 99–
115.

214 REFERENCES

[114] Memon, A. M. An event-flow model of gui-based applications for testing.
Software testing, verification and reliability 17, 3 (2007), 137–157.

[115] Memon, A. M., Pollack, M. E., and Soffa, M. L. Hierarchical
gui test case generation using automated planning. IEEE transactions on
software engineering 27, 2 (2001), 144–155.

[116] Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Ha-
jishirzi, H., and Zettlemoyer, L. Rethinking the role of demon-
strations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837 (2022).

[117] Montoto, P., Pan, A., Raposo, J., Bellas, F., and López, J.
Automated browsing in ajax websites. Data & Knowledge Engineering
70, 3 (2011), 269–283.

[118] Moreira, R. M., Paiva, A. C., Nabuco, M., and Memon, A.
Pattern-based gui testing: Bridging the gap between design and qual-
ity assurance. Software Testing, Verification and Reliability 27, 3 (2017),
e1629.

[119] Nass, M., Alégroth, E., and Feldt, R. Augmented testing: Industry
feedback to shape a new testing technology. In 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW) (2019), IEEE, pp. 176–183.

[120] Nass, M., Alégroth, E., and Feldt, R. On the industrial applicabil-
ity of augmented testing: An empirical study. In 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW) (2020), IEEE, pp. 364–371.

[121] Nass, M., Alégroth, E., and Feldt, R. Why many challenges with
gui test automation (will) remain. Information and Software Technology
138 (2021), 106625.

[122] Nass, M., Alégroth, E., Feldt, R., Leotta, M., and Ricca,
F. Similarity-based web element localization for robust test automation.
arXiv preprint arXiv:2208.00677 (2022).

[123] Nass, M., Alégroth, E., Feldt, R., Leotta, M., and Ricca,
F. Similarity-based web element localization for robust test automation.
ACM Transactions on Software Engineering and Methodology 32, 3 (2023),
1–30.

REFERENCES 215

[124] Nass, M., Alégroth, E., Feldt, R., and Coppola, R. Robust
web element identification for evolving applications by considering visual
overlaps. In 2023 IEEE Conference on Software Testing, Verification and
Validation (ICST) (2023), pp. 258–268.

[125] Nass, M., Coppola, R., Alégroth, E., and Feldt, R. Robust
web element identification for evolving applications by considering visual
overlaps. arXiv preprint arXiv:2301.03863 (2023).

[126] Nass, M., Olsson, H., and Alégroth, E. Jautomate: a tool for
system-and acceptance-test automation. In IEEE Sixth International
Conference on Software Testing, Verification and Validation (2013), Cite-
seer.

[127] Nguyen, B. N., Robbins, B., Banerjee, I., and Memon, A. Guitar:
an innovative tool for automated testing of gui-driven software. Automated
software engineering 21, 1 (2014), 65–105.

[128] Nguyen, V., To, T., and Diep, G.-H. Generating and selecting re-
silient and maintainable locators for web automated testing. Software
Testing, Verification and Reliability 31, 3 (2021), e1760. e1760 stvr.1760.

[129] Nguyen, V., To, T., and Diep, G.-H. Generating and selecting re-
silient and maintainable locators for web automated testing. Software
Testing, Verification and Reliability 31, 3 (2021), e1760.

[130] Ohba, M. Software quality= test accuracy× test coverage. In Proceed-
ings of the 6th international conference on Software engineering (1982),
pp. 287–293.

[131] Olan, M. Unit testing: test early, test often. Journal of Computing
Sciences in Colleges 19, 2 (2003), 319–328.

[132] Onoma, A. K., Tsai, W.-T., Poonawala, M., and Suganuma, H.
Regression testing in an industrial environment. Communications of the
ACM 41, 5 (1998), 81–86.

[133] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al.
Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems 35 (2022), 27730–
27744.

216 REFERENCES

[134] Öztürk, M. M., and Zengin, A. Improved gui testing using task
parallel library. ACM SIGSOFT Software Engineering Notes 41, 1 (2016),
1–8.

[135] Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive simulacra of
human behavior. arXiv preprint arXiv:2304.03442 (2023).

[136] Patel, S., and Shah, V. Automated testing of software-as-a-service
configurations using a variability language. In Proceedings of the 19th
International Conference on Software Product Line (2015), ACM, pp. 253–
262.

[137] Pham, R., Holzmann, H., Schneider, K., and Brüggemann, C.
Beyond plain video recording of gui tests: linking test case instructions
with visual response documentation. In Proceedings of the 7th Interna-
tional Workshop on Automation of Software Test (2012), IEEE Press,
pp. 103–109.

[138] Rafi, D. M., Moses, K. R. K., Petersen, K., and Mäntylä, M. V.
Benefits and limitations of automated software testing: Systematic litera-
ture review and practitioner survey. In Proceedings of the 7th International
Workshop on Automation of Software Test (2012), IEEE Press, pp. 36–42.

[139] Razeghi, Y., Logan IV, R. L., Gardner, M., and Singh, S. Impact
of pretraining term frequencies on few-shot reasoning. arXiv preprint
arXiv:2202.07206 (2022).

[140] Rey, D., and Neuhäuser, M. Wilcoxon-signed-rank test. In Interna-
tional encyclopedia of statistical science. Springer, 2011, pp. 1658–1659.

[141] Ricca, F., Leotta, M., and Stocco, A. Chapter three - three open
problems in the context of E2E web testing and a vision. vol. 113 of
Advances in Computers. Elsevier, 2019, pp. 89–133.

[142] Runeson, P., Engström, E., and Storey, M.-A. The design science
paradigm as a frame for empirical software engineering. Contemporary
empirical methods in software engineering (2020), 127–147.

[143] Runeson, P., and Höst, M. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineer-
ing 14, 2 (2009), 131–164.

REFERENCES 217

[144] Sackett, D. L. Bias in analytic research. In The Case-Control Study
Consensus and Controversy. Elsevier, 1979, pp. 51–63.

[145] Silva, D. B., Endo, A. T., Eler, M. M., and Durelli, V. H. An
analysis of automated tests for mobile android applications. In 2016 XLII
Latin American Computing Conference (CLEI) (2016), IEEE, pp. 1–9.

[146] Staron, M. Action research in software engineering. Springer, 2020.

[147] Stocco, A., Yandrapally, R., and Mesbah, A. Visual web test
repair. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2018), pp. 503–514.

[148] Takahashi, J., and Kakuda, Y. Effective automated testing: a solu-
tion of graphical object verification. In Proceedings of the 11th Asian Test
Symposium, 2002.(ATS’02). (2002), IEEE, pp. 284–291.

[149] Takala, T., Katara, M., and Harty, J. Experiences of system-level
model-based gui testing of an android application. In 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation
(2011), IEEE, pp. 377–386.

[150] Thummalapenta, S., Devaki, P., Sinha, S., Chandra, S., Gnana-
sundaram, S., Nagaraj, D. D., and Sathishkumar, S. Efficient
and change-resilient test automation: An industrial case study. In Pro-
ceedings of the 2013 International Conference on Software Engineering
(2013), IEEE Press, pp. 1002–1011.

[151] Thummalapenta, S., Sinha, S., Singhania, N., and Chandra, S.
Automating test automation. In 2012 34th International Conference on
Software Engineering (ICSE) (2012), IEEE, pp. 881–891.

[152] Tonella, P., Ricca, F., and Marchetto, A. Recent advances in
web testing. In Advances in Computers, vol. 93. Elsevier, 2014, pp. 1–51.

[153] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you
need. Advances in neural information processing systems 30 (2017).

[154] Vos, T. E., Kruse, P. M., Bauersfeld, S., Wegener, J., et al.
Testar: Tool support for test automation at the user interface level. Inter-
national Journal of Information System Modeling and Design (IJISMD)
6, 3 (2015), 46–83.

218 REFERENCES

[155] Wang, W., Sampath, S., Lei, Y., Kacker, R., Kuhn, R., and
Lawrence, J. Using combinatorial testing to build navigation graphs
for dynamic web applications. Software Testing, Verification and Relia-
bility 26, 4 (2016), 318–346.

[156] Wiklund, K., Eldh, S., Sundmark, D., and Lundqvist, K. Im-
pediments for software test automation: A systematic literature review.
Software Testing, Verification and Reliability 27, 8 (2017), e1639.

[157] Wohlin, C. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering
(2014), Citeseer, p. 38.

[158] Wohlin, C., and Runeson, P. Guiding the selection of research
methodology in industry–academia collaboration in software engineering.
Information and software technology 140 (2021), 106678.

[159] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. Experimentation in software engineering. Springer
Science & Business Media, 2012.

[160] Wood, L., Le Hors, A., Apparao, V., Byrne, S., Champion, M.,
Isaacs, S., Jacobs, I., Nicol, G., Robie, J., Sutor, R., et al.
Document object model (dom) level 1 specification. W3C recommendation
1 (1998).

[161] Wu, J., Swearngin, A., Zhang, X., Nichols, J., and Bigham,
J. P. Screen correspondence: Mapping interchangeable elements between
uis. arXiv preprint arXiv:2301.08372 (2023).

[162] Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the
25th international conference on Machine learning (2008), pp. 1192–1199.

[163] Xie, Q., Grechanik, M., Fu, C., and Cumby, C. Guide: A gui
differentiator. In 2009 IEEE International Conference on Software Main-
tenance (2009), IEEE, pp. 395–396.

[164] Xie, Q., and Memon, A. M. Using a pilot study to derive a gui model
for automated testing. ACM Transactions on Software Engineering and
Methodology (TOSEM) 18, 2 (2008), 7.

REFERENCES 219

[165] y Arcas, B. A. Do large language models understand us? Daedalus 151,
2 (2022), 183–197.

[166] Yandrapally, R., Thummalapenta, S., Sinha, S., and Chandra,
S. Robust test automation using contextual clues. In Proceedings of the
2014 International Symposium on Software Testing and Analysis (2014),
pp. 304–314.

[167] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem solving with
large language models. arXiv preprint arXiv:2305.10601 (2023).

[168] Yeh, T., Chang, T.-H., and Miller, R. C. Sikuli: using gui screen-
shots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology (2009), pp. 183–192.

[169] Yujian, L., and Bo, L. A normalized levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence 29, 6 (2007),
1091–1095.

[170] Zaugg, H., West, R. E., Tateishi, I., and Randall, D. L. Mende-
ley: Creating communities of scholarly inquiry through research collabo-
ration. TechTrends 55, 1 (2011), 32–36.

[171] Zeng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W., Yang,
W., and Xie, T. Automated test input generation for android: Are
we really there yet in an industrial case? In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (2016), ACM, pp. 987–992.

[172] Zheng, Y., Huang, S., Hui, Z.-w., and Wu, Y.-N. A method of
optimizing multi-locators based on machine learning. In 2018 IEEE In-
ternational Conference on Software Quality, Reliability and Security Com-
panion (QRS-C) (2018), IEEE, pp. 172–174.

[173] Zhu, H., Hall, P. A., and May, J. H. Software unit test coverage and
adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.

220 REFERENCES

	Abstract
	Acknowledgements
	Overview of Publications
	Papers in this Thesis
	Other Papers not in this Thesis

	List of Abbreviations
	Introduction
	Overview
	Background and Related Work
	Problem and Research Motivation
	Research Objectives and Questions
	Research Methodology
	Overview of Chapters
	Threats to Validity
	Discussion
	Future Work

	Why many challenges with GUI Test Automation (will) remain
	Introduction
	Systematic Literature Review
	Results and Synthesis
	Discussion
	Threats to Validity
	Conclusions
	Acknowledgements

	Augmented Testing: Industry Feedback To Shape a New Testing Technology
	Introduction
	Background
	Related Work
	Industrial Workshop Study
	Results
	Discussion
	Conclusions
	Future Work
	Acknowledgements

	On the Industrial Applicability of Augmented Testing: An Empirical Study
	Introduction
	Related Work
	Methodology
	Results
	Analysis
	Discussion
	Conclusions
	Future Work
	Acknowledgments

	Similarity-based Web Element Localization for Robust Test Automation
	Introduction
	Locating Web Elements
	The Similo approach
	Experimental study
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusions and Future Work
	Acknowledgements

	Robust Web Element Identification for Evolving Applications by Considering Visual Overlaps
	Introduction
	Background and Related Work
	Visually overlapping nodes approach
	Empirical Evaluation
	Results
	Discussion
	Conclusions and Future Work

	Improving Web Element Localization by Using a Large Language Model
	Introduction
	Large Language Models
	Similo
	VON Similo LLM
	Methodology
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusions
	Future Work
	Acknowledgements

	References

